基于BP神经网络的PID控制器设计.doc
《基于BP神经网络的PID控制器设计.doc》由会员分享,可在线阅读,更多相关《基于BP神经网络的PID控制器设计.doc(39页珍藏版)》请在咨信网上搜索。
1、基于BP神经网络的PID控制器设计中文摘要经典PID控制算法作为一般工业过程控制方法应用范围相当广泛,原则上讲它并不依赖于被控对象的具体数学模型,但算法参数的整定却是一件很困难的工作,更为重要的是即使参数整定完成,由于参数不具有自适应能力,因环境的变化,PID控制对系统偏差的响应变差,参数需重新整定。针对上述问题,人们一直采用模糊、神经网络等各种调整PID参数的自适应方法,力图克服这一难题.一般情况下,一个自适应控制系统能够运行,其相应的参数要适应现场状况的变化,因此就必须根据现场的数据对相应的参数进行在线辨识或估计。对非时变参数可以通过一段时间的在线辨识确定下来,但对时变参数系统,必须将这个
2、过程不断进行下去,因此要求辨识速度快或参数变化速度相对较慢,极大地限制了自适应技术的应用.为克服这种限制,本文利用文献1的思想,将神经网络的技术应用于参数辨识过程,结合经典的PID控制算法,形成一种基于BP神经网络的自适应PID控制算法。这一算法的本质是应用神经网络建立系统参数模型,将时变参数系统的参数变化规律转化为神经网络参数模型,反映了参数随状态而变的规律,即当系统变化后,可直接由模型得到系统的时变参数,而无需辨识过程.在神经网络参数模型的基础上,结合文献1已知系统模型下PID控制参数的计算,推导出一种自适应PID控制算法。通过在计算机上对线性和非线性系统仿真,结果表明了这种自适应PID控
3、制算法的有效性。关键词自适应PID控制算法,PID控制器,参数模型,神经网络,BP算法- I-AbstractClassical PID control algorithm,as a general method of industrial process control,application scope is broadrangedIn principle, it does not depend on the specificmathematical model of the controlled plant,but tuning algorithm parameters is a ver
4、ydifficult taskTo moreimportant,even if tuning the parameter is completed,asparameters do not have adaptive capacity,due to a change in environment,PID controlof the response of the system deviation get worse,parameters need to be re-tumedInresponse to these problems,people have been using the adapt
5、ive method of fuzzy,neural networks to adjust PID parameters,try hard to overcome this problemUnder normal circumstances,an adaptive control system can be capable of running,and the corresponding parameters should adapt to tlle change in status of the scene,so the corresponding parameters must be ba
6、sed on the data of the scene to conduct online identification or estimatedNon-timevarying parameters can be confirmed for a period of online identification,but the timevarying parameters system will be necessary to continue this ongoing process,so the requirement of fast identification or the relati
7、ve slow pace of change of parameters,greatly limits the application of adaptive technologyTo overcome this limitation,this paper uses the ideology of literature1,thetechnology of neural network will be used in the process of parameter identification,combining classical PID control algorithm,forms an
8、 adaptive PlD control algorithmbased on BP neural networkThe essence of this algorithm applies neural network tobuild the model of system parameters,change the change law of the parameters of time-varying parameters systems into the Parametric model of neural network,reflectingthe law that the param
9、eters change with the state,that is,when the system changes,itcan get the timevarying parameters of system from the model directly,without the process ofidentificationOn the basis of me parameters model of neural network,combining the computation of PID controI parameters in the known system model o
10、f literature1,derived an adaptive PID control algorithmThrough the simulation of linear and non1inear systems in the computer,the result indicates that this adaptive PID control algorithm is effectiveKey WordAdaptive PID control algorithm, PID controller, Model of parameter,Neural network, BP algori
11、thm39- -目录中文摘要IAbstractII1 绪论11。1 课题研究背景及意义11.2 神经网络的发展21。3 课题研究现状31。4 论文组织结构42 PID62。1 PID简述62。2 PID控制原理62。3 PID控制方法概述72.4常规PID控制算法的理论基础92.4。1模拟PID控制算法92.4。2 数字PID控制算法102.4.3 对PID控制算法中积分环节改进122。4。4 对PID控制算法中微分环节改进132。4。5 常规PID控制的局限152.5 本章小结173 人工神经网络183。1 人工神经网络构成的基本原理183。2 人工神经网络的类型183.3 神经网络的特点1
12、83。4 对BP神经网络设计与分析203。5 典型的多层前向网络-BP网络的结构及算法213.5.1 BP神经网络概述213。5。2 BP神经网络的前向计算223。5.3 BP神经网络的误差反向传播和加权系数的调整233。6 本章小结254 仿真程序智能分析264。1 仿真过程264。2 本章小结30结论与展望30致谢31参考文献32A1 附录33A2 附录361 绪论1。1 课题研究背景及意义按比例、积分和微分进行控制的调节器(简称为PID控制器)2,是最早发展起来的应用经典控制理论的控制策略之一,是工业过程控制中应用最广泛,历史最悠久,生命力最强的控制方式,在目前的工业生产中,90%以上的
13、控制器为PID控制器.它采用基于对象数学模型的方法,优点是算法简单、鲁棒性好和可靠性高,控制效果良好,因此被广泛应用于工业控制过程,尤其适用于可建立精确数学模型的确定性控制系统。对于传统PID控制器,在把其投入运行之前,要想得到较理想的控制效果,必须先整定好三个参数:即比例系数Kp、积分系数Ki、微分系数Kd。这是因为生产部门中有各种各样的被控对象,它们对控制器的特性会有不同的要求,整定的目的就是设法使控制器的特性能够和被控对象配合好,以便得到最佳控制效果,如果控制器参数整定不好,即使控制器本身很先进,其控制效果也会很差。随着工业的发展,控制对象的复杂程度也在不断加深,许多大滞后、时变的、非线
14、性的复杂系统,如温度控制系统,被控过程机理复杂,具有高阶非线性、慢时变、纯滞后等特点,常规PID控制显得无能为力;另外,实际生产过程中存在着许多不确定因素,如在噪声、负载振动和其他一些环境条件下,过程参数甚至模型结果都会发生变化,如变结构、变参数、非线性、时变等,不仅难以建立受控对象精确的数学模型,而且PID控制器的控制参数具有固定形式,不易在线调整,难以适应外界环境的变化,这些使得PID控制器在实际应用中不能达到理想的效果,越来越受到限制和挑战。因此,如何使PID控制器具有在线自整定其参数的功能,是自从使用PID控制以来人们始终关注的重要问题。并且,随着相关领域技术的不断发展,对控制系统的指
15、标要求也越来越高。人们一直在寻求PID控制器参数的自适应技术3,以适应复杂系统的控制要求,神经网络理论的发展使这种设想成为可能.人工神经网络是由大量简单的基本神经元相互连接而构成的自适应非线性动态系统。神经网络控制能够充分任意地逼近任何复杂的非线性关系,具有很强的信息综合能力,能够学习和适应严重不确定系统的动态特性,故有很强的鲁棒性和容错性,可以处理那些难以用模型和规则描述的过程,在一些不确定系统的控制中已成功应用。误差反向传播神经网络(简称BP网络),所具有的任意非线性表达能力,可以通过对系统性能的学习来实现具有最佳组合的PID控制。基于BP神经网络的PID控制器由经典的PID控制器和BP神
16、经网络组成,其基本思想是利用神经网络的自学习功能和非线性函数的表示能力,遵从一定的最优指标,在线调整PID控制器的参数,使之适应被控对象参数以及结构的变化和输入参考信号的变化,并能够抵御外来扰动的影响,达到具有良好的鲁棒性的目标.虽然BP神经网络的理论依据坚实,推导过程严谨,通用性强,在控制领域对复杂的多变量系统的控制有很大的优势,但是由于其算法是基于最陡梯度下降算法、以误差平方为目标函数的,所以其不可避免地存在着易陷入局部极小、收敛速度慢等缺陷。并且,神经网络的初始权值的选取直接影响着控制器的性能,采用反复试验初始权值的方法很难得到最优参数的控制器。因此,需要一种算法解决神经网络权值优化的问
17、题。控制学术界广泛采用的算法是学习算法、遗传算法等等4。学习算法,它的收敛速度很慢,一个简单的问题的求解,其训练次数也要几千代,甚至上万代。而且它对网络的初始权值、自身的学习速率和动量等参数极为敏感,稍小的变动就会引起网络震荡。正是这些原因使其训练速度和精度不是很理想。而用遗传算优化神经网络权值,无论精度和速度上都有了很大的提高。但是作为一种仿生算法,虽然可以用来解决各类复杂问题,但是难以克服过早收敛的缺点和控制参数过多,尤其在优化神经网络时候,优化过程总是难以控制.因此,为神经网络的优化寻求更简单更有效的全局优化算法,是优化领域的一个研究热点.微粒群优化(Particle Swarm Opt
18、imization PSO)的出现为神经网络权值训练提供了一个新的研究方向。微粒群算法6是由Kennedy和Eberhart等于1995年提出的。它通过简单的社会模型的模拟,将需寻优的参数组合成群体,用每个微粒表示被优化问题的一个解,通过粒子间的相互作用,使群体中的个体向目标区域移动,从而发现复杂搜索空间的最优区域.其不采用遗传算法的交叉和变异等算子,各个微粒根据自己的位置和速度来搜索,整个搜索和更新过程是跟随当前最优解来进行的。因此,算法能够更快的寻找最优解,避免使网络陷入局部极小。1。2 神经网络的发展早在20世纪初,人们就已经发现人脑的工作方式与现在的计算机是不同的。人脑是由极大量基本单
19、元(称之为神经元)经过复杂的相互连接而成的一种高度复杂的、非线性的、并行处理的信息处理系统.人工神经网络,是借鉴人脑的结构和特点,通过大量简单处理单元(神经元或节点)互连组成的大规模并行分布式信息处理和非线性动力学系统。它具有巨量并行性、结构可变性、高度非线性、自学习性和自组织性等特点。因此,它能解决常规信息处理方法难以解决或无法解决的问题,尤其是那些属于思维(形象思维)、推理及意识方面的问题从人脑的生理结构出发来研究人的智能行为,模拟人脑信息处理的过程,即人工神经网络的研究,自20世纪40年代以来,它的发展经历了一条由兴起、萧条和兴盛三个阶段构成的曲折道路。早在1943年精神病学家和神经解剖
20、学家McCulloch与数学家Pitts在数学生物物理学会刊(Bulletin ofMathematical Biophysics)上发表文章,总结了生物神经元的一些基本生理特征,提出了形式神经元的数学描述与结构,即MP模型。他们的神经元模型假定遵循一种所谓“有或无”规则。如果如此简单的神经元数目足够多和适当设置突触连接并且同步操作,McCulloch和Pitts证明这样构成的网络原则上可以计算任何可计算函数。这是一个有重大意义的结果,有了它就标志着神经网络和人工智能学科的诞生.1958年,计算机科学家Rosenblatt提出感知机(Perceptron),首次把神经网络理论付诸工程实现.这是
21、一种学习和自组织的心理学模型,它基本上符合神经生物学的知识,模型的学习环境是有噪声的,网络构造中存在随机连接,这是符合动物学习的自然环境。当时,人们对神经网络的研究过于乐观,认为只要将这种神经元互连成一个网络,就可以解决人脑思维的模型问题.但是,随之而来的Minsky和Papert(1969)所著的Percepen一书,利用数学证明单层感知器所能计算的根本局限,提出感知器的处理能力有限,甚至连XOR这样的问题也不能解决,并在多层感知器的总结章中,论述了单层感知器的所有局限性在多层感知器中是不可能被全部克服的。使人们降低了对神经网络研究的热情,从而使神经网络进入萧条时期7。但在其间,一些人工神经
22、网络的先驱仍然致力于这一研究,美国波士顿大学的Crrossberg提出了自适应共谐振理论(ART网),芬兰的Kohonen提出了自组织映射(SOM),Amari致力于神经网络数学理论的研究,这些都为神经网络的进一步研究与发展奠定了基础。1986年Remelhart和Mcllelland等人提出了并行分布处理的理论,同时,Werbos和Parker独立发展了多层网络的BP算法,这是目前最普遍的网络,广泛用于实际问题求解。如今,神经网络的应用,已渗透到模式识别、图像处理、非线性优化、语音处理、自然语言理解、自动目标识别、机器人、专家系统等各个领域,并取得了令人瞩目的成果.从众多应用研究领域取得的丰
23、硕成果来看,人工神经网络的发展具有强大的生命力.当前存在的问题是智能水平还不高,许多应用方面的要求还不能得到很好的满足:网络分析与综合的一些理论性问题(如稳定性、收敛性的分析,网络的结构综合等)还未得到很好的解决.随着人们对大脑信息处理机理认知的深化,以及人工神经网络智能水平的提高,人工神经网络必将在科学技术领域发挥更大的作用.1.3 课题研究现状传统的PID参数优化方法主要是一些手动整定方法,阶跃响应是其整定PID参数的主要依据。这种方法仅根据系统的动态响应来整定控制器的参数,具有物理意义明确的优点,可以以较少的试验工作量和简便的计算,得出控制器参数,因其简单实用,因而在生产现场仍在大量应用
24、,尤其是在单回路系统中.但运用该方法得到的控制器参数比较粗糙,控制效果只能满足一定要求,参数的优化远远不够,同时,对于一些系统,由于控制对象的复杂性、变化性,难以运用传统方法进行整定8。神经网络研究的兴起,为PID控制器的整定提供了新的方法和广阔的应用空间.对基于神经网络的控制系统的研究,在过去的十几年中取得了广泛的关注,主要是因为:其一,神经网络表现出对非线性函数的较强逼近能力;其二,大多数控制系统均表现出某种未知非线性特性。目前,国内外学者提出了许多面向对象的神经网络控制结构和方法,从大类上较具有代表性的有以下几种:神经网络监督控制、神经网络直接逆动态控制、神经网络参数估计自适应控制、神经
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于 BP 神经网络 PID 控制器 设计
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。