基于最小二乘法的数据处理问题研究综述.doc
《基于最小二乘法的数据处理问题研究综述.doc》由会员分享,可在线阅读,更多相关《基于最小二乘法的数据处理问题研究综述.doc(9页珍藏版)》请在咨信网上搜索。
1、基于最小二乘法的数据处理问题研究综述摘要:对基于最小二乘法的数据处理方法进行了介绍。首先对传统最小二乘法基本原理进行了介绍,然后根据例子来说明怎样运用传统最小二乘法来解决实际辨识问题。而且本文针对传统最小二乘存在的缺陷进一步阐述了一些改进型最小二乘法,综述了最小二乘法的研究现状,最后对最小二乘的发展趋势做了预测。关键字:最小二乘法 数据处理 改进型最小二乘法 发展趋势1引言在科学实验中经常要把离散的测量数据转化为直观的便于研究的曲线方程,即曲线拟合1.由于在实验室或实际应用中,误差是不可避免的,所以为了不把原有离散数据中的误差引入,人们经常用拟合来确定模拟函数。拟合方法不要求模拟函数通过已知离
2、散的点,而追求的是所有点到模拟函数达到某种误差指标的最小化,是一种整体上的逼近性质.最小二乘法是解决这类曲线拟合中一种较为常用的方法,根据最小二乘法的定义2:“最小二乘法是一种数学优化技术,它通过最小化误差的平方和寻找数据的最佳函数匹配.”最小二乘法是从误差拟合角度对回归模型进行参数估计或系统辨识,因此最小二乘在参数估计、系统辨识以及预测、预报等众多领域中得到极为广泛的应用。本文在阐述最小二乘法理论的基础上对于其在实际问题中的辨识应用做了简单介绍,并指出实际应用中存在的不足,列举了几种改进型的最小二乘算法来进行优化比较,最后给出了最小二乘法的发展趋势。2 最小二乘法的理论基础及应用2。1最小二
3、乘法的理论基础最小二乘法作为一种传统的参数估计方法,早已经被大家所了解. 然而大多同学对最小二乘法的认识都比较模糊,仅仅把最小二乘法理解为简单的线性参数估计。 事实上,最小二乘法在参数估计、系统辨识以及预测、预报等众多领域都有着广泛的应用3。特别是针对动态系统辨识的方法有很多4,但其中应用最广泛,辨识效果良好的就是最小二乘辨识方法,研究最小二乘法的应用在就要对其基本原理有较为深刻的理解.下面是一般的最小二乘法问题:求实系数线性方程组(1)方程组可能无解。即很可能不存在一组实数x1,x2,,xn使(2)恒成立.因此我们转而求其次,设法找到实数组 x1,x2,,xn使误差的平方和最小,这样的 x1
4、,x2,,xn称为方程组的最小二乘解,这样问题就叫最小二乘法问题5.2。2 最小二乘法的应用举例理论只有被利用才能体现其价值意义,下面我就以系统辨识中的最小二乘法的例子为大家讲讲怎样在实际中应用最小二乘法解决辨识问题.考虑如下图1中的线性系统:(3)其中,u(k)为系统激励信号,y(k)为系统输出,e(k)为模型噪声.其系统模型如图1所示:图1 SISO的系统模型结构图其中G(z-1)是系统函数模型,N(z1)为有色噪声系统模型,e(k)为白噪声v(k)经过系统函数为N(z1)的系统后的输出6.通常(4)式中:(5)(6)则系统可表示为:(7)设样本和参数集为:(8)h(k)为可观测的量,差分
5、方程可写为最小二乘形式(9)那么如何在系统噪声e(k)存在的情况下从该方程中正确的解出,即是系统辨识的任务。为了求出,我们面临三大问题:一是输入信号的选择,二是判决准则的选取,三是辨识算法的选择,下面一一探讨.一选择输入为了准确辨识系统参数,我们对输入信号有两大要求,一是信号要能持续的激励系统所有状态,二是信号频带能覆盖系统的频带宽度。除此之外还要求信号有可重复性,不能是不可重复的随机噪声,因此我们通常选择M序列或逆M序列作为输入。二准则函数因为本文主要探讨最小二乘方法,在此选取准则函数(10)使准则函数的估计值记做,称作参数的最小二乘估计值。在式(7)中,令k=1,2,3,L,可构成线性方程
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于 最小二乘法 数据处理 问题 研究 综述
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。