二元一次方程组(难点、考点、易错点)教程文件.doc
《二元一次方程组(难点、考点、易错点)教程文件.doc》由会员分享,可在线阅读,更多相关《二元一次方程组(难点、考点、易错点)教程文件.doc(26页珍藏版)》请在咨信网上搜索。
1、二元一次方程组(难点、考点、易错点)精品文档 DSE 金牌数学专题系列 二元一次方程组(难点、考点、易错点)一、 导入:讲个故事:“从前有个太监”有人耐不住问:“下面呢?”继续讲故事:“下面?没了啊”一、知识点回顾(一)二元一次方程组 1.二元一次方程:像xy2这样的方程中含有两个未知数(x和y),并且未知数的指数都是1,这样的方程叫做二元一次方程.2.二元一次方程的解:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.3.二元一次方程组:把两个方程xy3和2x3y10合写在一起为像这样,把两个二元一次方程组合在一起,就组成了一个二元一次方程组.4.二元一次方程组的解:
2、二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.5.代入消元法:由二元一次方程组中的一个方程,把一个未知数用含另一个未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法.6.加减消元法:两个二元一次方程中同一个未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程.这种方法叫做加减消元法,简称加减法.(二)二元一次方程组的实际应用列方程组解应用题的常见类型主要有:. 行程问题.包括追及问题和相遇问题,基本等量关系为:路程速度时间;. 工程问题.一般分为两类,一类是一般的工程问题,
3、一类是工作总量为1的工程问题.基本等量关系为:工作量工作效率 工作时间;3. 和差倍分问题.基本等量关系为:较大量较小量多余量,总量倍数 1倍量;4. 航速问题.此类问题分为水中航行和风中航行两类,基本关系式为:顺流(风):航速静水(无风)中的速度水(风)速逆流(风):航速静水(无风)中的速度水(风)速5. 几何问题、年龄问题和商品销售问题等.二、 专题讲解 专题一 错题分析【误解】A或D【思考与分析】二元一次方程组的解是使方程组中的每一个方程的左右两边的值都相等的两个未知数的值,而中的一个方程的解,并不能让另一方程左、右两边相等,所以它们都不是这个方程组的解,只有C是正确的验证方程组的解时,
4、要把未知数的值代入方程组中的每个方程中,只有使每个方程的左、右两边都相等的未知数的值才是方程组的解【正解】C把式代入式得 8-3y+3y=8,0y=0.所以y可以为任何值.所以原方程组有无数组解【正解】由式得x=8-3y把式代入式得2(8-3y)+5y=-21,解得y=37.把y=37代入式得x=8-337,解得x=-103. 所以【例3】 解方程组【错解】 方程- 得: 3y=0,所以y=0,把 y=0,代入 得x=2,所以原方程组的解为【分析】 在- 时出错.【正解】 - 得:(x2y)(xy)2(2) x2yxy4 y=4 y=4把y=4代入得x=6,所以原方程组的解为【小结】 两方程相
5、减时 ,易出现符号错误,所以要特别细心.【例4】 某化妆晚会上,男生脸上涂蓝色油彩,女生脸上涂红色油彩.游戏时,每个男生都看见涂红色油彩的人数比涂蓝色油彩的人数的2倍少1人;而每个女生都看见涂蓝色油彩的人数是涂红色油彩的人数的,问晚会上男、女生各有几人?错解: 设晚会上男生有x人,女生有y人.根据题意,得 把代入,得x=(2x-1),解得x=3.把x=3代入,得y=5.所以答:晚会上男生3人,女生5人.【分析】 本题错在对题中的数量关系没有弄清.每个男生都看见涂红色油彩的人数比涂蓝色油彩的人数的2倍少1人,这里涂蓝色油彩的人数不是题中所有的男生人数,而是除自己之外的男生人数,同理,女生看到的人
6、数也应是除自己以外的女生人数.正解: 设晚会上男生有x人,女生有y人.根据题意,得把代入,得x=2(x-1)11,解得x=12.把x=12代入,得y=21.所以答:晚会上男生12人,女生21人.解二元一次方程组的问题看似简单,但如果你稍不注意,就有可能犯如下错误.【例5】 解方程组【错解】 方程 得: 2x=4,原方程组的解是: x=2【错因分析】 错解只求出了一个未知数 x,没有求出另一个未知数y.所以求解是不完整的.【正解】 (接上)将 x=2带入得: y=0.所以原方程组的解为【小结】 用消元法来解方程组时,只求出一个未知数的解,就以为求出了方程组的解,这是对二元一次方程组的解的意义不明
7、确的表现.应牢记二元一次方程组的解是一组解,而不是一个解.【例6】解方程组【错解】由式得y=2x-19 把式代入式得2(2x19【错因分析】“错解”在把变形后的式代入式时,符号书写出现了错误当解比较复杂的方程组时,应先化简,在求出一个未知数后,可以将它代入化简后的方程组里的任意一个方程中,求出第二个未知数,这样使得运算方便,避免出现错误【正解一】化简原方程组得 【正解二】化简原方程组得6+得 17x=114,【小结】解二元一次方程组可以用代入法,也可以用加减法一般地说,当方程组中有一个方程的某一个未知数的系数的绝对值是1或有一个方程的常数项是0时,用代入法比较方便;当两个方程中某一未知数的系数
8、的绝对值相等或成整数倍时,用加减法比较方便专题二 思维点拨【例1】 小红到邮局寄挂号信,需要邮资元角. 小红有票额为角和角的邮票若干张,问各需多少张这两种面额的邮票?【思考与解】要解此题,第一步要找出问题中的数量关系.寄信需邮资元角,由此可知所需邮票的总票额要等于所需邮资3.8元. 再接着往下找数量关系,所需邮票的总票额等于所需角邮票的总票额加上所需角邮票的总票额. 所需角邮票的总票额等于单位票额角与所需角邮票数目的乘积. 同样的,所需角邮票的总票额等于单位票额角与所需角邮票数目的乘积. 这就是题中蕴含的所有数量关系.第二步要抓住题中最主要的数量关系,构建等式.由图可知最主要的数量关系是:所需
9、邮资=所需邮票的总票额.第三步要在构建等式的基础上找出这个数量关系中牵涉到哪些已知量和未知量.已知量是所需邮资.8元,两种邮票的单位票额.6元和0.8元,未知量是两种邮票的数目.第四步是设元(即设未知量),并用数学符号语言将数量关系转化为方程. 设0.6元的邮票需x张,0.8元的邮票需y张,用字母和运算符号将其转化为方程:0.6x+0.8y=3.8. 第五步是解方程,求得未知量. 由于两种邮票的数目都必须是自然数,此二元一次方程可以用列表尝试的方法求解.方程的解是第六步是检验结果是否正确合理. 方程的两个解中两种邮票的数目均为正整数,将两解代入方程后均成立,所以结果是正确合理的.第七步是答,需
10、要1张6角的邮票和4张8角的的邮票,或需要5张6角的邮票和1张8角的的邮票.【例2】小聪全家外出旅游,估计需要胶卷底片张. 商店里有两种型号的胶卷:型每卷张底片,型每卷张底片. 小聪一共买了卷胶卷,刚好有张底片. 求两种胶卷的数量.【思考与解】第一步:找数量关系. 型胶卷数型胶卷数胶卷总数,型胶卷的底片总数型胶卷的底片总数底片总数. 型胶卷的底片总数=每卷型胶卷所含底片数型胶卷数,型胶卷的底片总数每卷型胶卷所含底片数型胶卷数.第二步:找出最主要的数量关系,构建等式. 型胶卷数型胶卷数胶卷总数,型胶卷的底片总数型胶卷的底片总数底片总数.第三步:找出未知量和已知量. 已知量是:胶卷总数,度片总数,
11、每卷型胶卷所含底片数,每卷型胶卷所含底片数;未知量是:型胶卷数,型胶卷数.第四步:设元,列方程组. 设型胶卷数为x,型胶卷数为y,根据题中数量关系可列出方程组:第五步:答:型胶卷数为3,型胶卷数为1.【小结】我们在解这类题时,一般就写出设元、列方程组并解出未知量和答这几步,如有必要可以加上验证这一步.其他步骤可以省略.【例】用加减法解方程组【思考与分析】经观察,我们发现两个方程中y的系数互为相反数,故将两方程相加,消去y.解:,得x=8.解得x=2.把x=2代入,得2+2y=3.解得y=.所以,原方程组的解为:【思考与分析】经观察,我们发现x的系数成倍数关系,故先将方程2再与方程作差消去x较好
12、.解:,得4x-6y=16. ,得11y=-22.解得y=-2.把y=-2代入,得x-3(-2). 解得 x=1.所以原方程组的解为【思考与分析】 如果用代入法解这个方程组,就要从方程组中选一个系数比较简单的方程进行变形,用含一个未知数的式子表示另一个未知数,然后代入另一个方程.本题中,方程的系数比较简单,应该将方程进行变形.如果用加减法解这个方程组,应从计算简便的角度出发,选择应该消去的未知数.通过观察发现,消去x比较简单.只要将方程两边乘以2 ,然后将两方程相减即可消去x.解法1: 由得x=8-2y. 把代入得2(8-2y)+5y=21,解得y=5.把y=5代入得x=-2.所以原方程组的解
13、为:解法2: 2得2x+4y=16. -得2x+5y-(2x+4y)=21-16,解得y=5.把y=5代入得x=-2.所以原方程组的解为【小结】 我们解二元一次方程组时,用到的都是消元的思想,用代入法还是加减法解题,原则上要以计算简便为依据.【例6】用代入法解方程组【思考与分析】经观察,我们发现方程为用y表示x的形式,故将代入,消去x.解:把代入,得(y+3)-8y=14.解得y=-1.把y=-1代入,得x=2.所以原方程组的解为【例7】用代入法解方程组【思考与分析】经观察比较,我们发现方程更易于变为用含一个未知数的代数式表示另一个未知数的形式,故选择变形,消去y.解:由,得y=2x-5. 把
14、代入,得x+4(2x-5)=2.解得x=2.把x=2代入,得y=-1.所以原方程组的解为:【例8】 甲、乙两厂,上月原计划共生产机床90台,结果甲厂完成了计划的112,乙厂完成了计划的110,两厂共生产机床100台,求上月两厂各超额生产了多少台机床?【思考与分析】 我们可以采用两种方法设未知数,即直接设法和间接设法.直接设法就是题目要求什么就设什么为未知数,本题中就是设上月甲厂超额生产x台,乙厂超额生产y台;而间接设法就是问什么并不设什么,而是采用先设出一个中间未知数,求出这个中间未知数,再利用它同题中要求未知数的联系,解出所要求的未知数,题中我们可设上月甲厂原计划生产x台,乙厂原计划生产y台
15、.解法一:直接设法.设上月甲厂超额生产x台,乙厂超额生产y台,则共超额了1009010(台),而甲厂计划生产的台数是台,乙厂计划生产的台数是台.根据题意,得 答:上月甲厂超额生产6台,乙厂超额生产4台.解法二:间接设法.设上月甲厂原计划生产x台,乙厂原计划生产y台.根据题意,得 所以x(1121)50126,y(110-1)40104.答:上月甲厂超额生产6台,乙厂超额生产4台.【例9】 某学校组织学生到100千米以外的夏令营去,汽车只能坐一半人,另一半人步行.先坐车的人在途中某处下车步行,汽车则立即回去接先步行的一半人.已知步行每小时走4千米,汽车每小时走20千米(不计上下车的时间),要使大
16、家下午5点同时到达,问需何时出发.【思考与分析】 我们从行程问题的3个基本量去寻找,可以发现,速度已明确给出,只能从路程和时间两个量中找出等量关系,有题意知,先坐车的一半人,后坐车的一半的人,车三者所用时间相同,所以根据时间来列方程组.如图所示是路程示意图,正确使用示意图有助于分析问题,寻找等量关系.解:设先坐车的一半人下车点距起点x千米,这个下车点与后坐车的一半人的上车点相距y千米,根据题意得化简得从起点到终点所用的时间为所以出发时间为:17107.即早晨7点出发.答:要使学生下午5点到达,必须早晨7点出发.【例10】 小明的妈妈为了准备小明一年后上高中的费用,现在以两种方式在银行共存了20
17、00元钱,一种是年利率为2.25的教育储蓄,另一种是年利率为2.25的一年定期存款,一年后可取出2042.75元,问这两种储蓄各存了多少钱?(利息所得税利息金额20%,教育储蓄没有利息所得税)【思考与分析】 设教育储蓄存了x元,一年定期存了y元,我们可以根据题意可列出表格:解:设存一年教育储蓄的钱为x元,存一年定期存款的钱为y元,则 答:存教育储蓄的钱为1500元,存一年定期的钱为500元.【反思】 我们在解一些涉及到行程、收入、支出、增长率等的实际问题时,有时候不容易找出其等量关系,这时候我们可以借助图表法分析具体问题中蕴涵的数量关系,题目中的相等关系随之浮现出来.专题三 竞赛数学【例1】已
18、知方程组的解x,y满足方程5x-y=3,求k的值.【思考与分析】本题有三种解法,前两种为一般解法,后一种为巧解法.()由已知方程组消去k,得x与y的关系式,再与5x-y=3联立组成方程组求出x,y的值,最后将x,y的值代入方程组中任一方程即可求出k的值.()把k当做已知数,解方程组,再根据5x-y=3建立关于k的方程,便可求出k的值.()将方程组中的两个方程相加,得5x-y=2k+11,又知5x-y=3,所以整体代入即可求出k的值.把代入,得,解得k=-4.解法二:3,得17y=k-22,解法三:+,得5x-y=2k+11.又由5x-y=3,得2k+11=3,解得k=-4.【小结】解题时我们要
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二元 一次 方程组 难点 考点 易错点 教程 文件
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。