用对偶单纯形法求对偶问题的最优解知识讲解.doc
《用对偶单纯形法求对偶问题的最优解知识讲解.doc》由会员分享,可在线阅读,更多相关《用对偶单纯形法求对偶问题的最优解知识讲解.doc(9页珍藏版)》请在咨信网上搜索。
1、用对偶单纯形法求对偶问题的最优解精品资料用对偶单纯形法求对偶问题的最优解摘要:在线性规划的应用中,人们发现一个线性规划问题往往伴随着与之配对的另一个线性规划问题.将其中一个称为原问题,另一个称为对偶问题.对偶理论深刻揭示了原问题与对偶问题的内在联系.由对偶问题引申出来的对偶解有着重要的经济意义.本文主要介绍了对偶问题的基本形式以及用对偶单纯形法求解对偶问题的最优解.关键词:线性规划;对偶问题;对偶单纯形Using Dual Simplex Method To Get The Optimal Solution Of The Dual ProblemAbstract:In the applicat
2、ion of the linear programming, people find that a linear programming problem is often accompanied by another paired linear programming problem. One is called original problem. Another is called the dual problem. Duality theory reveals the internal relationsbetween the dual problem and the original p
3、roblem. The solution of the dual problem is of a great economic significance. In this paper, we mainly discuss the basic form of the dual problem and how to use dual simplex method to get the optimal solution of the dual problem.Key words: linear programming;dual problem;dual simplex method字典 - 查看字典
4、详细内容1. 代词 1. another显示对应的拉丁字符的拼音字典 - 查看字典详细内容1 引言首先我们先引出什么是线性规划中的对偶问题.任何一个求极大化的线性规划问题都有一个求极小化的线性规划问题与之对应,反之亦然,如果我们把其中一个叫原问题,则另一个就叫做它的对偶问题,并称这一对互相联系的两个问题为一对对偶问题.每个线性规划都有另一个线性规划(对偶问题)与它密切相关,对偶理论揭示了原问题与对偶问题的内在联系.下面将讨论线性规划的对偶问题的基本形式以及用对偶单纯形法求最优解.在一定条件下,对偶单纯形法与原始单纯形法相比有着显著的优点.2 对偶问题的形式对偶问题的形式主要包括对称形对偶问题和
5、非对称性对偶问题.2.1对称形对偶问题设原线性规划问题为Max (2.1)则称下列线性规划问题Max (2.2)为其对偶问题,其中称其为对偶变量,并称(2.1)和(2.2)式为一对对称型对偶问题.原始对偶问题(2.1)和对偶问题(2.2)之间的对应关系可以用表2-1表示.表2-1 原始约束Min W对偶约束 Max Z 这个表从横向看是原始问题,从纵向看使对偶问题.用矩阵符号表示原始问题(2.1)和对偶问题(2.2)为原问题 (2.3)对偶问题 (2.4)其中是一个行向量. 2.2 非对称对偶问题 线性规划有时以非对称形式出现,那么如何从原始问题写出它的对偶问题,我们从一个具体的例子来说明这种
6、非对称形式的线性规划问题的对偶问题的建立方法.例1 写出下列原始问题的对偶问题解: 第一约束不等式等价与下面两个不等式约束第二个约束不等式照写第三个不等式变成以 分别表示这四个不等式约束对应的对偶变量,则对偶问题为令 ,则上式的对偶问题变为: 一般可以证明,若原问题中的某个变量无非负限制,则对偶问题中的相应约束为等式.3 对偶单纯形法对偶问题求解具有重要的意义,有多种方法解决对偶问题.下面介绍用对偶单纯形法来解决线性规划的对偶问题.先介绍以下几个线性规划的基本概念:基: 已知是约束条件的系数矩阵,其秩为.若是中阶非奇异子矩阵(即可逆矩阵),则称是线性规划问题中的一个基.基向量:基中的一列即称为
7、一个基向量.基中共有个基向量. 非基向量:在中除了基B之外的一列则称之为基的非基向量. 基变量:与基向量相应的变量叫基变量,基变量有个.非基变量:与非基向量相应的变量叫非基变量,非基变量有个.由线性代数的知识知道,如果我们在约束方程组系数矩阵中找到一个基,令这个基的非基变量为零,再求解这个元线性方程组就可得到唯一的解了,这个解我们称之为线性规划的基本解.首先重新回顾一下单纯形法的基本思想,其迭代的基本思路是:先找出一个基可行解,判断其是否为最优解,如果不是,则转换到另一更优的基可行解,并使目标函数值不断优化,直到找到最优解为止.我们可以用另一种思路,使在单纯形法每次迭代的基本解都满足最优检验,
8、但不一定满足非负约束,迭代时使不满足非负约束的变量个数逐步减少.当全部基变量都满足非负约束条件时,就得到了最优解,这种算法就是对偶单纯形法.因此,单纯形法是从一个可行解通过迭代转到另一个可行解,直到检验数满足最优条件为止.对偶单纯形法是从满足对偶可行性条件出发通过迭代逐步搜索出最优解.在迭代过程中始终保持基解的对偶可行性,而使不可行性逐步消失.现把对偶单纯形法的基本步骤总结如下:第一,把所给的线性规划问题转化为标准型;第二,找出一个初始正则基,要求对应的单纯形表中的全部检验数 ,但“右边”列中允许有负数;第三,若“右边”列中各数均非负,则已是最优基,于是,已求得最优解,计算终止.否则转为第四步
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 对偶 单纯 形法求 问题 最优 知识 讲解
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。