一元二次方程配方法说课稿.doc
《一元二次方程配方法说课稿.doc》由会员分享,可在线阅读,更多相关《一元二次方程配方法说课稿.doc(7页珍藏版)》请在咨信网上搜索。
1、一元二次方程配方法说课稿下面我将根据自己编写的教案,从教学目标的确定、教学重点与教学难点的分析、教学方式与手段的选择、教学过程的设计四方面对本节课的教学作一个说明。一、教学目标的确定配方法是初中教学中的重要内容,也是一种重要的数学方法.配方的方法在以后的学习中经常用到,如在二次根式、代数式的变形及二次函数中有广泛应用.对于一元二次方程,配方法是解法中的通法,它的推导建立在直接开平方法的基础上,同时它又是推导公式法的基础.因此,根据课标要求和学生实际情况,制定了如下的教学目标:1、理解并掌握配方法;2、通过探索配方法的过程,培养观察、比较、分析、概括、归纳的能力;3、通过配方法的探究活动,培养学
2、生勇于探索的良好学习习惯,感受数学的严谨性。二、教学重点与教学难点的分析本节课是配方法的起始课,教学重点是用配方法解二次项系数是1的一元二次方程.学生在前一节课已经掌握了直接开平方解一边是完全平方式的一元二次方程的方法,本节课中研究的方程不具备上述结构特点,需要合理添加条件进行转化,即配方,而学生在以前的学习中没有类似经验,因此对配方方法的探索是本节课的教学难点.三、教学方式与教学手段的说明采取启发探究式教学,在教学中主要以启发学生进行探究的形式展开,利用学生已有的知识,让学生自主探索,通过对比,明晰方程结构特征,联想完全平方公式,对方程进行转化,发现、理解并初步掌握配方法.在教学中,使用PP
3、T课件,丰富教学内容和形式。四、教学过程的设计根据本节课的教学目标,我将教学过程设计为以下五个环节:活动一,创设情境,提出问题;活动二,对比探究,解决问题;活动三,随堂练习,巩固深化;活动四,继续探究,拓展提升;活动五,回顾梳理,分层作业。下面,我将按这五个环节进行具体说明。(一)创设情境,提出问题首先以实际问题引入:要使一块矩形场地的长比宽多6m,并且面积为16m2,场地的长和宽应各是多少?将学生放置于实际问题的背景下,有助于激发学生的主动性和求知欲。这个问题中的数量关系比较简单,学生很容易列出相应的方程:设场地宽xm,长( )m。根据矩形面积为16m2,列方程 ,即 .但是通过观察方程结构
4、,学生发现这个方程暂时不会解,感受到问题的存在。这时教师通过问题(2)如何解所列方程?怎样把它转化为我们已经会解的方程?引导学生初步思考、回顾已有的知识,主动参与到本节课的研究中来。(二)对比探究,解决问题本节课力求在学生已有知识和经验基础之上,让学生通过观察、对比、联想、转化,自主发现解决问题的方向和规律,理解和掌握配方法.因此,在这一阶段活动中以问题为引导设置了四个具体环节。问题(1):我们会解什么样的一元二次方程?举例说明。用问题唤起学生的记忆,明确现在会求解的方程的特点是:等号一边是完全平方式,另一边是一个非负常数的形式,运用直接开平方可以求解.这是后面配方转化的目标,也是对比研究的基
5、础.问题(2):把你给出的方程化为一般形式,并把两个方程进行对比,你能得到什么启发?教师选取学生所举其中一例,展示解方程的过程并把它化为一般形式.如 ,它可用直接开平方求解,化成一般形式为 ,虽然学生各自选取的例子不同,但都能进行这种形式的改变,启发学生逆向研究问题的思维方式。通过这一过程,引导学生发现能用直接开平方法求解的方程都可以化成一般形式,那么一般形式的方程是否也能转化为可以直接开平方的形式呢?于是,实现这种转化就成为探索的方向,如何进行合理的转化则是下一步探究活动的核心。问题(3):探索 的求解过程和方法.这里要给学生充分的时间进行思考和交流,教师在学生小组交流后,组织全班进行讨论,
6、通过观察方程的结构与完全平方式的联系找到问题的突破口。在问题(1)、(2)的基础上,学生获得了解决问题的基本思路,即将方程转化成 的形式。学生通过观察方程结构,发现 虽然不是完全平方式,但前两项具有完全平方式的特征,只要通过添加条件即可凑成完全平方式即配方。因此,为避免干扰,先将常数项16移项至方程右边,此时方程化为 。对比完全平方式,学生不难发现,方程左边加上一个常数9,就能凑成完全平方式,因此可以根据等式性质在方程两边都加上9,将方程化为 ,即 ,从而成功地完成了由不会解到会解的转化。我校是一所市级示范校,学生有一定的学习能力,对完全平方公式的掌握也比较到位,基于这样的学情,对这一阶段探究
7、活动的安排,我没有采用教科书上的示例,即用 与上节课研究过的方程 进行结构上的比较,而是采取直接与完全平方式做对比,这样做能够更加突显配方的本质,帮助学生发现常数项的确定与一次项系数之间的关系。设置问题时有意识地增大了思维的力度,引导学生认识到配方的必要性、发现配方的一般规律,锻炼了学生的能力.在学生在探究完成的基础上,师生把探究出的解题过程和方法以框图的形式完整呈现,两边加9(即 )使左边配成的形式移项左边写成平方形式降次解一次方程并重点关注配方的过程和关键步骤。利用框图的形式整理出完整的解题过程和方法,让学生进一步体会配方的意义和规律。同时,利用框图再次明晰解方程的程序化思想.在此基础上,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 一元 二次方程 配方 法说课稿
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。