正弦定理证明上课讲义.doc
《正弦定理证明上课讲义.doc》由会员分享,可在线阅读,更多相关《正弦定理证明上课讲义.doc(6页珍藏版)》请在咨信网上搜索。
1、正弦定理证明精品文档正弦定理的证明解读克拉玛依市高级中学 曾艳一、正弦定理的几种证明方法abDABC1.利用三角形的高证明正弦定理(1)当ABC是锐角三角形时,设边AB上的高是CD,根据锐角三角函数的定义,有,。由此,得 ,同理可得 , 故有 .从而这个结论在锐角三角形中成立.ABCDba(2)当ABC是钝角三角形时,过点C作AB边上的高,交AB的延长线于点D,根据锐角三角函数的定义,有, 。由此,得 ,同理可得 故有 .由(1)(2)可知,在ABC中, 成立.从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即.1用知识的最近生长点来证明:实际应用问题中,我们常遇到问题:已知点A,点
2、B之间的距AB|,可测量角A与角B,需要定位点C,即:在如图ABC中,已知角A,角B,ABc,求边AC的长b解:过C作CDAB交AB于D,则 推论:同理可证:2.利用三角形面积证明正弦定理DCBA已知ABC,设BCa, CAb,ABc,作ADBC,垂足为D.则RtADB中, ,AD=ABsinB=csinB.SABC=.同理,可证 SABC=. SABC=.absinc=bcsinA=acsinB,在等式两端同除以ABC,可得.即.3.向量法证明正弦定理(1)ABC为锐角三角形,过点A作单位向量j垂直于,则j与的夹角为90-A,j与的夹角为90-C.由向量的加法原则可得,为了与图中有关角的三角
3、函数建立联系,我们在上面向量等式的两边同取与向量j的数量积运算,得到 由分配律可得. B C|j|Cos90+|j|Cos(90-C)=|j|Cos(90-A). j asinC=csinA. A 另外,过点C作与垂直的单位向量j,则j与的夹角为90+C,j与的夹角为90+B,可得.(此处应强调学生注意两向量夹角是以同起点为前提,防止误解为j与的夹角为90-C,j与的夹角为90-B).CA(2)ABC为钝角三角形,不妨设A90,过点A作与垂直的单位向量j,则j与的夹角为A-90,j与的夹角为90-C.由,得j+j=j, jAB即aCos(90-C)=cCos(A-90),asinC=csinA
4、.另外,过点C作与垂直的单位向量j,则j与的夹角为90+C,j与夹角为90+B.同理,可得. 4.外接圆证明正弦定理在ABC中,已知BC=a,AC=b,AB=c,作ABC的外接圆,O为圆心,连结BO并延长交圆于B,设BB=2R.则根据直径所对的圆周角是直角以及同弧所对的圆周角相等可以得到BAB=90,C =B,sinC=sinB=.同理,可得.这就是说,对于任意的三角形,我们得到等式.二、剖析四种证明方法的本质联系虽然正弦定理的有四种证明方法(也可以看成5种,对于第一种证明方法也可以用向量的形式来表示,可以看成向量、向量在向量方向上的投影相等),虽然每种证明方法都用不同的数学知识从不同的角度去
5、证明了正弦定理,但是仔细观察会发现有一条纽带一直联系在正弦定理的各种证明方法之间,可以说每一种证明方法离开这条纽带都是没办法成立的,这条纽带就是:直角三角形思想。正弦定理的四种证明方法(在正弦定理的第一种证明方法中,用到的就是最基本的通过三角形作高把斜三角形转化为直角三角形。第二面积法,三角形的面积等于低乘高,也是把一般的三角形问题转化为垂直关系来研究。第三种向量法用到的也是向量的垂直关系。第四种外接圆法也借助了直径所对的圆周角等于这个特殊的直角三角形)都是利用了直角三角形;余弦定理的平面几何证明方法,也是利用三角形做高转化成直角三角形来证明;在没学正余弦定理之前,学生直接利用初中的知识来解斜
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 正弦 定理 证明 上课 讲义
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。