第八章--统计回归模型备课讲稿.doc
《第八章--统计回归模型备课讲稿.doc》由会员分享,可在线阅读,更多相关《第八章--统计回归模型备课讲稿.doc(19页珍藏版)》请在咨信网上搜索。
1、第八章 统计回归模型精品资料第八章 统计回归模型回归分析是研究一个变量与其它若干变量之间相关关系的一种数学工具.它是在一组试验或观测数据的基础上,寻找被随机性掩盖了的变量之间的依存关系.粗略的讲,可以理解为用一种确定的函数关系去近似代替比较复杂的相关关系.这个函数称为回归函数.回归分析所研究的主要问题是如何利用变量、的观察值(样本),对回归函数进行统计推断,包括对它进行估计及检验与它有关的假设等.回归分析包含的内容广泛.此处将讨论多项式回归、多元线性回归、非线性回归以及逐步回归.一、多项式回归(1) 一元多项式回归一元多项式回归模型的一般形式为.如果从数据的散点图上发现与呈现较明显的二次(或高
2、次)函数关系,则可以选用一元多项式回归.1. 用函数polyfit估计模型参数,其具体调用格式如下:p=polyfit(x,y,m) p返回多项式系数的估计值;m设定多项式的最高次数;x,y为对应数据点值.p,S=polyfit(x,y,m) S是一个矩阵,用来估计预测误差.2. 输出预估值与残差的计算用函数polyval实现,其具体调用格式如下:Y=polyval(p,X) 求polyfit所得的回归多项式在X处的预测值Y.Y,DELTA=polyval(p,X,S) p,S为polyfit的输出,DELTA为误差估计.在线性回归模型中,YDELTA以50%的概率包含函数在X处的真值.3.
3、模型预测的置信区间用polyconf实现,其具体调用格式如下:Y,DELTA=polyconf(p,X,S,alpha) 求polyfit所得的回归多项式在X处的预测值Y及预测值的显著性为1-alpha的置信区间YDELTA,alpha缺省时为0.05.4. 交互式画图工具polytool,其具体调用格式如下:polytool(x,y,m);polytool(x,y,m,alpha);用m次多项式拟合x,y的值,默认值为1,alpha为显著性水平,默认值为0.05.例1 观测物体降落的距离s与时间t的关系,得到数据如下表,求s.t (s)1/302/303/304/305/306/307/30
4、s (cm)11.8615.6720.6026.6933.7141.9351.13t (s)8/309/3010/3011/3012/3013/3014/30s (cm)61.4972.9085.4499.08113.77129.54146.48解 根据数据的散点图,应拟合为一条二次曲线.选用二次模型,具体代码如下:%输入数据t=1/30:1/30:14/30;s=11.86 15.67 20.60 26.69 33.71 41.93 51.13 61.49 72.90 85.44 99.08 113.77 129.54 146.48;%多项式系数拟合p,S=polyfit(t,s,2);则得
5、回归模型为:.%y的拟合值及预测值y的置信半径deltay,dalta=polyconf(p,t,S);得结果如下:y= Columns 1 through 11 11.8729 15.7002 20.6148 26.6168 33.7060 41.8826 51.1465 61.4978 72.9363 85.4622 99.0754 Columns 12 through 14 113.7759 129.5637 146.4389dalta= Columns 1 through 11 0.0937 0.0865 0.0829 0.0816 0.0817 0.0823 0.0827 0.082
6、7 0.0823 0.0817 0.0816 Columns 12 through 14 0.0829 0.0865 0.0937%交互式画图polytool(t,s,2);polytool所得的交互式图形如图8-1所示.图8-1(2) 多元二项式回归多元二项式回归模型的一般形式为.多元二项式回归命令:rstool(x,y,model,alpha) x表示nm矩阵;y表示n维列向量;alpha为显著性水平(缺省时为0.05);model表示由下列4个模型中选择1个(用字符串输入,缺省时为线性模型):linear(线性):;purequadratic(纯二次):;interaction(交叉):
7、;quadratic(完全二次):.例2 设某商品的需求量与消费者的平均收入、商品价格的统计数据如下,建立回归模型,预测平均收入为1000、价格为6时的商品需求量.需求量10075807050659010011060收入1000600 1200500300400130011001300300价格5766875439解 选择纯二次模型,即.%输入数据x1=1000 600 1200 500 300 400 1300 1100 1300 300;x2=5 7 6 6 8 7 5 4 3 9;x=x1 x2;y=100 75 80 70 50 65 90 100 110 60;%多元二项式回归rst
8、ool(x,y,purequadratic);得如下结果:图8-2得到一个如图所示的交互式画面,左边是x1(=1000)固定时的曲线y(x1)及其置信区间,右边是x2(=6)固定时的曲线y(x2)及其置信区间.用鼠标移动图中的十字线,或在图下方窗口内输入,可改变x1,x2.在左边图形下方的方框中输入1000,右边图形下方的方框中输入6,则画面左边的“Predicted Y1”下方的数据变为88.4791,即预测出平均收入为1000、价格为6时的商品需求量为88.4791.在画面左下方单击”Export”,在出现的窗体中单击”ok”按钮,则beta、rmse和residuals都传送到Matla
9、b工作区中.在Matlab工作区中输入命令:beta,rmse,得结果:beta=110.5313 0.1464 -26.5709 -0.0001 1.8475rmse =4.5362故回归模型为:,剩余标准差为4.5362,说明此回归模型的显著性较好.二、多元线性回归多元线性回归模型的一般形式为.在Matlab统计工具箱中使用函数regress实现多元线性回归.具体调用格式为:b=regress(Y,X)b,bint,r,rint,stats=regress(Y,X,alpha)其中,.对于一元线性回归,取即可.b为输出向量;b,bint表示回归系数估计值和它们的置信区间;r表示残差;rin
10、t表示残差的置信区间;stats表示用于检验回归模型的统计量,有四个数值:相关系数、值、与值对应的概率、的值.相关系数越接近1,说明回归方程越显著;时拒绝,越大,说明回归方程越显著;与对应的概率时拒绝,回归模型成立;alpha表示显著性水平(缺省时为0.05).残差及其置信区间可以用命令rcoplot(r,rint)画出.例3 已知某湖泊八年来湖水中COD浓度实测值(y)与影响因素,如湖区工业产值(x1)、总人口数(x2)、捕鱼量(x3)、降水量(x4)的资料,建立y的水质分析模型.湖水浓度与影响因素数据表x11.3761.3751.3871.4011.4121.4281.4451.477x2
11、0.4500.4750.4850.5000.5350.5450.5500.575x32.1702.5542.6762.7132.8233.0883.1223.262x40.89221.16100.53460.95891.02391.04991.10651.1387y5.195.305.605.826.006.066.456.95解 作出因变量y与各自变量的样本散点图作散点图的目的主要是观察因变量y与各自变量间是否有比较好的线性关系,以便选择恰当的数学模型形式.图8-3、图8-4、图8-5、图8-6分别为y与x1、x2、x3、x4的散点图.从图中可以看出这些点大致分布在一条直线旁边,因此有较好的
12、线性关系,可以采用线性回归. 图8-3 y与x1的散点图 图8-4 y与x2的散点图 图8-5 y与x3的散点图 图8-6 y与x4的散点图在Matlab中实现回归的具体代码如下:%输入数据x1=1.376 1.375 1.387 1.401 1.412 1.428 1.445 1.477;x2=0.450 0.475 0.485 0.500 0.535 0.545 0.550 0.575;x3=2.170 2.554 2.676 2.713 2.823 3.088 3.122 3.262;x4=0.8922 1.1610 0.5346 0.9589 1.0239 1.0499 1.1065
13、1.1387;x=ones(8,1) x1 x2 x3 x4;y=5.19 5.30 5.60 5.82 6.00 6.06 6.45 6.95;%多元线性回归b,bint,r,rint,stats=regress(y,x);得如下结果:b = -13.9849 13.1920 2.4228 0.0754 -0.1897bint = -26.0019 -1.9679 1.4130 24.9711 -14.2808 19.1264 -1.4859 1.6366 -0.9638 0.5844r = -0.0618 0.0228 0.0123 0.0890 0.0431 -0.1473 0.0145
14、 0.0274rint = -0.1130 -0.0107 -0.1641 0.2098 -0.1051 0.1297 -0.2542 0.4321 -0.0292 0.1153 -0.2860 -0.0085 -0.3478 0.3769 -0.1938 0.2486stats = 0.9846 47.9654 0.0047 0.0123故回归模型为:,此外,由stats的值可知,。%残差分析,作残差图rcoplot(r,rint)图8-7从残差图可以看出,除第一和第六个数据外,其余数据的残差离零点均较近,且残差的置信区间均包含零点.第一和第六个数据可视为异常点,将其去掉后重新拟合可得新的回
15、归模型.三、非线性回归非线性回归模型的一般形式为,其中对回归系数是非线性的.非线性回归包括如下几个用于计算回归参数、预测输出、置信区间以及输出交互图像的函数.1. 非线性最小二乘参数估计对于非线性方程的的系数估计通常采用最小二乘估计,又叫做非线性最小二乘回归.在Matlab中采用nlinfit实现,其调用格式如下:beta=nlinfit(x,y,fun,beta0)返回非线性回归方程系数的最小二乘估计值.非线性方程由fun给定,fun为用户提供形如的函数,beta为待估系数;beta0为回归系数的初值.beta,r,J=nlinfit(x,y,fun,beta0)返回回归系数beta、残差r
16、、Jacobi矩阵J.2. 最小二乘估计参数的置信区间求非线性最小二乘估计的系数的置信区间用nlparci计算。其输入为nlinfit函数的输出beta,r,J。函数具体调用格式如下:ci=nlparci(beta,r,J)返回系数beta的95%置信区间.ci=nlparci(beta,r,J,alpha)返回系数beta的100(1-alpha)%置信区间.3. 最小二乘估计模型的预测输出及其置信区间非线性最小二乘估计模型的预测输出及其置信区间用nlpredci计算.函数具体调用格式如下:ypred,delta=nlpredci(fun,inputs,beta,r,J)返回模型在对应inp
17、uts处的输出预测值ypred,给出95%的置信区间ypred-delta, ypred+delta;ypred,delta=nlpredci(fun,inputs,beta,r,J,alpha)返回模型在对应inputs处的输出预测值ypred,给出100(1-alpha)%的置信区间ypred-delta, ypred+delta.4. 非线性拟合和预测的交互图形工具nlintool是非线性拟合和预测的交互图形工具.函数具体调用格式如下:nlintool(x,y,fun,beta0)返回x,y的非线性最小二乘法的曲线拟合图,并画出95%的置信区间;nlintool(x,y,fun,beta
18、0,alpha)给出曲线拟合图及100(1-alpha)%的置信区间;nlintool(x,y,fun,beta0,alpha,xname,yname)给出曲线拟合图及100(1-alpha)%的置信区间,标出x,y变量名称.例4 在化工生产中获得的氯气的级分随生产时间下降,假定在时,与之间有如下形式的非线性模型:现收集43组数据,如下所示.要求利用该数据求,的值以及它们95%的置信区间.并画出拟合曲线.此处设,的初值分别为0.30,0.02.8.00,8.00,10.00,10.00,10.00,10.00,12.00,12.00,12.00,14.00,14.00,14.00,16.00,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第八 统计 回归 模型 备课 讲稿
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。