融合蛋白柔性linker的选择教学内容.doc
《融合蛋白柔性linker的选择教学内容.doc》由会员分享,可在线阅读,更多相关《融合蛋白柔性linker的选择教学内容.doc(11页珍藏版)》请在咨信网上搜索。
1、融合蛋白柔性linker的选择精品资料蛋白融合Linker的设计与选择 接头序列(Linker)设计是基因融合技术能否成功的关键技术之一。即通过一段适当的核苷酸序列将不同的目的基因连接起来, 使其在适当的生物体内表达成为一条单一的肽链, 其中起连接作用的氨基酸称为Linker1。融合蛋白中的两种成分能否分别形成正确的空间结构、 更好的发挥生物学活性, 与连接融合蛋白中两种成分的接头序列密切相关。重组生成的融合蛋白要求插入融合蛋白中的linker不能影响目的蛋白各自的功能。因此, Linker序列的设计和选择对融合基因的构建至关重要。 针对Linker序列的设计和选择己有诸多相关的研究2。目前的
2、研究主要有两种, 即螺旋形式的Linker肽如A(EAAAK)nA和低疏水性、 低电荷效应的氨基酸组成的接头, 以后者应用较广泛。这种低疏水性、 低电荷效应的氨基酸组成的多肽接头能够充分伸展以分开两种融合的组分, 使之能在互不干扰的情况下充分折叠成各自的天然构象。Ryoichi等3在两种不同功能的融合蛋白之间插入了不同类型的linker序列, 包括可形成螺旋状的不同长度的肽链、 柔性linker以及葡萄糖球菌蛋白A(PA)。结果发现螺旋状的linker同柔性linker及PA一样, 可以有效的将融合蛋白的两个结构域分开, 甚至可增强融合蛋白的功能。Linker的长度是融合基因构建的又一个重要的
3、因素。如果Linker 的长度过长, 则使融合蛋白对蛋白酶比较敏感, 导致活性融合蛋白在生产过程中的产量下降; 应用较短的Linker, 可以克服重组蛋白酶分解的问题, 但可使两个融合分子相距太近导致蛋白功能的丧失。Linker的长度不应小于3.5 nm , 这是由于相邻肽键的距离为0.38 nm, 因此连接肽至少应包含10个氨基酸。目前最为常用的是Huston设计合成的(GGGGS)3序列。研究发现, 连接肽为(Gly4Ser)3的融合蛋白表现出较高的复性效率。这可能是(Gly4Ser)3连接肽较长且柔软, 在复性时能够降低融合蛋白的两组份间的空间位阻, 从而更有利于融合蛋白各个结构域的正确
4、折叠。所以, Linker 的长度不能过长也不能过短。 Linker的选择, 还应考虑Linker内部的氨基酸序列, 研究发现, Linker组成相同但序列不同时, 构建的融合蛋白的稳定性存在显著差异; 编码Linker的核苷酸组成, 调整编码Linker的核苷酸组成, 虽不改变原接头Linker 的氨基酸序列, 但融合蛋白的表达存在显著差异。Linker序列中有太多的螺旋和角结构会限制融合蛋白的伸缩性, 进而影响融合蛋白的生物学活性。总之, Linker的选择不是一成不变的, 而要根据融合蛋白分子的大小和特性来决定。细胞因子是由免疫细胞和某些非免疫细胞经刺激而合成、 分泌的一大类多功能、 高
5、活性的生物物质。它在介导机体多种免疫反应及对各类免疫活性细胞的分化、 发育和活化中起着十分重要的作用。细胞因子融合蛋白(cytokine fusion protein)技术是当今免疫学研究的一个热点方向。该方法是基于这些细胞因子具有相同或相关的功能活性而各自作用靶点不同, 利用基因工程技术将两种或多种细胞因子融合在一起, 其融合基因表达产物既具有其组成因子独特的生物学活性或使其某些活性显著提高, 还可能会通过生物学活性的互补及协同效应发挥出较单一细胞因子简单配伍所不具备的复合生物学功能, 甚至还可能会产生一些新的结构及生物学功能, 这种新型的人工蛋白具有极高的应用价值和良好的发展前景。早在19
6、86年Seno等用含EcoR I的12个核苷酸(4肽)CCGGAATTCATG为接头, 将IFN和IL2片段加以连接, 结果发现产生的融合蛋白具有IFN与IL2的双重活性。迄今为止, 国内外已相继报道了多种有价值的细胞因子融合蛋白。现就细胞因子融合蛋白技术的原则、 构建类型、 应用现状以及发展前景做一简要概述。1 细胞因子蛋白融合技术1.1 蛋白融合的构建原则 基因工程构建细胞因子融合蛋白须满足以下几个条件: (1)各融合分子的目的DNA片段置于同一套调控序列(包括启动子、 增强子、 核糖体结合序列、 终止子等)的控制之下。(2)融合分子间须以富含疏水性氨基酸的接头Linker连接, 同时也要
7、考虑接头序列的长度和核苷酸、 氨基酸的组成、 排列顺序等因素。如融合蛋白内部接头的不同, 可导致融合蛋白各部分化学结构的改变, 而影响到各融合分子的空间构象, 导致其生物学活性差异。所以, 设计肽链之间的接头时, 要尽可能不影响两端蛋白的自然折叠, 使各融合成分互不干扰。(3)为了保证融合蛋白的生物学活性, 还需考虑构成融合蛋白各成份本身的特性及其相互作用机制。如肿瘤坏死因子(TNF)和干扰素(IFN)在抑制肿瘤细胞、 增强抗病毒活性等方面有协同作用。有学者构建了TNF和IFN的融合蛋白, 但发现该融合蛋白的抗病毒和抗肿瘤活性与单独应用TNF和IFN相比, 抗病毒活性降低24倍, 抗肿瘤活性降
8、低15倍, 与构建融合蛋白的初衷相背。分析原因, 可能是这两种细胞因子的理化性质差异较大, IFN活性稳定, 而TNF活性极易丧失, 其融合蛋白在一定程度上影响了彼此的活性。1.2 蛋白融合Linker的设计与选择 接头序列(Linker)设计是基因融合技术能否成功的关键技术之一。即通过一段适当的核苷酸序列将不同的目的基因连接起来, 使其在适当的生物体内表达成为一条单一的肽链, 其中起连接作用的氨基酸称为Linker1。融合蛋白中的两种成分能否分别形成正确的空间结构、 更好的发挥生物学活性, 与连接融合蛋白中两种成分的接头序列密切相关。重组生成的融合蛋白要求插入融合蛋白中的linker不能影响
9、目的蛋白各自的功能。因此, Linker序列的设计和选择对融合基因的构建至关重要。针对Linker序列的设计和选择己有诸多相关的研究2。目前的研究主要有两种, 即螺旋形式的Linker肽如A(EAAAK)nA和低疏水性、 低电荷效应的氨基酸组成的接头, 以后者应用较广泛。这种低疏水性、 低电荷效应的氨基酸组成的多肽接头能够充分伸展以分开两种融合的组分, 使之能在互不干扰的情况下充分折叠成各自的天然构象。Ryoichi等3在两种不同功能的融合蛋白之间插入了不同类型的linker序列, 包括可形成螺旋状的不同长度的肽链、 柔性linker以及葡萄糖球菌蛋白A(PA)。结果发现螺旋状的linker同
10、柔性linker及PA一样, 可以有效的将融合蛋白的两个结构域分开, 甚至可增强融合蛋白的功能。Linker的长度是融合基因构建的又一个重要的因素。如果Linker 的长度过长, 则使融合蛋白对蛋白酶比较敏感, 导致活性融合蛋白在生产过程中的产量下降; 应用较短的Linker, 可以克服重组蛋白酶分解的问题, 但可使两个融合分子相距太近导致蛋白功能的丧失。Linker的长度不应小于3.5 nm , 这是由于相邻肽键的距离为0.38 nm, 因此连接肽至少应包含10个氨基酸。目前最为常用的是Huston设计合成的(GGGGS)3序列。研究发现, 连接肽为(Gly4Ser)3的融合蛋白表现出较高的
11、复性效率。这可能是(Gly4Ser)3连接肽较长且柔软, 在复性时能够降低融合蛋白的两组份间的空间位阻, 从而更有利于融合蛋白各个结构域的正确折叠。所以, Linker 的长度不能过长也不能过短。Linker的选择, 还应考虑Linker内部的氨基酸序列, 研究发现, Linker组成相同但序列不同时, 构建的融合蛋白的稳定性存在显著差异; 编码Linker的核苷酸组成, 调整编码Linker的核苷酸组成, 虽不改变原接头Linker 的氨基酸序列, 但融合蛋白的表达存在显著差异。Linker序列中有太多的螺旋和角结构会限制融合蛋白的伸缩性, 进而影响融合蛋白的生物学活性。总之, Linker
12、的选择不是一成不变的, 而要根据融合蛋白分子的大小和特性来决定。2 细胞因子融合方式及其应用根据细胞因子融合分子的不同, 可把细胞因子融合蛋白大致分成以下几类:2.1 不同或相同细胞因子的融合蛋白 细胞因子具有多功能性和通用性, 其作用的靶点各有不同。利用细胞因子的这一特点, 可以通过基因融合技术创制出更佳的细胞因子融合蛋白, 其融合基因表达产物很可能表现出双因子简单配伍所没有的复合功能, 而且有可能会增强各个组份间的协同作用。IL3和GMCSF均为造血刺激因子, 它们对不同发育阶段的造血干细胞及祖细胞均具有促增殖和分化的作用, 且共用受体链。鉴于两者功能互补, Curtis等于1991年构建
13、并报道了第一个由不同细胞因子组成的融合蛋白人GMCSF/IL3和IL3/GMCSF融合蛋白, 分别称为PlXY321和PIXY344。为确保其各自的天然构象, 在GMCSF与 IL3两者之间均引入了一段疏水氨基酸序列, 从而保证其与受体的结合。体外受体结合实验证明, PIXY321与只表达IL3受体的JM1细胞株或只表达GMCSF的HL60细胞株结合时其亲和力比单体略高, 说明该融合蛋白可经IL3、 GMCSF结构域与其各自的受体结合。同时, PIXY321对AML193细胞株的增殖作用及刺激骨髓集落的形成都明显高于单独使用IL3、 GMCSF或IL3加GMCSF的作用, 其作用可提高510倍
14、。IL2、 IL6是两个具有多种免疫调节活性的细胞因子。1992年Fernad等构建了两个人IL2/IL6融合基因, 目的在于构建表达一种具有双重功能的免疫调节因子, 实验表明融合蛋白与野生型IL2的活性一致, 较IL6活性中度下降。出现此结果的原因可能是由于局部构象的改变或者是IL2与IL6之间的相互作用干扰所致。体外进一步研究表明, 该融合蛋白既可诱导T、 B细胞表达IL2R和IL6R, 并且还可作为分子桥梁促进和稳定T、 B细胞间的相互作用。国内的赵春华等也构建和高效表达了具有促进细胞集落形成、 促进LAK的增殖作用的IL2/IL6融合蛋白。将两种相同的细胞因子融合在一起也可以起到明显的
15、生物学功能。马大龙等构建了人双体IL6、 双体IL3融合蛋白, 研究表明双体IL6与单体IL6在生物学活性上差别不大, 但双体IL3对人骨髓细胞的集落刺激作用明显高于单体IL3的作用。IL7是T、 B淋巴细胞成熟分化过程中重要的细胞因子, 可以增强成熟T细胞的增殖及其功能, 并有促进CTL增殖、 分化并加强其杀伤活性, 刺激LAK细胞活性的能力。Lai等4用一段柔性接头将IL7和人肝细胞生长因子片段( hepatocyte growth factor beta2 chain, HGF beta)连接, 结果发现融合蛋白能选择性的高效刺激B祖细胞系的增殖。胰岛素样生长因子(IGF)常与其他生长因
16、子一起发挥协同作用, 是最好的二联细胞因子融合蛋白的备选因子。IGF II可刺激多种组织中细胞的增殖或分化。将IGF II与一段信号肽以及胰岛素样的昆虫激素bomyxin的N端序列融合表达, 便可得到分泌形式的具有生物活性的BOMIGF。Difalco等制备了一种BOMIGF和IL3的融合蛋白, 体外试验中它可刺激正常外周血细胞中的骨髓干细胞集落形成, 体内试验结果亦显示该融合蛋白能动员具有高度增殖活性的骨髓干细胞进人外周血, 进而定居至脾脏而发挥造血功能。2.2 细胞因子与其受体的融合蛋白 细胞因子与其受体结合时, 可促进其与其他相关分子的结合, 进而提高其生物学活性的发挥。IL6在肝细胞的
17、增殖中起着增强作用。IL6和IL6Ra (gp80)的结合使其易于和另一个受体IL6R(gp130)结合。可溶性IL6R蛋白(sIL6R)与IL6结合后, 靶细胞对IL6的敏感性增高, 并可使仅表达膜结合型IL6R的细胞(IL6R/gp130)对IL6起反应。在sIL6R/IL6双基因转染的小鼠中, sIL6R发挥锚定IL6的作用, 延长血浆IL6半衰期, 同时细胞对IL6的敏感性显著提高。Bcl2蛋白家族是细胞程序性死亡的重要调节因子, BclXL是Bcl2蛋白家族中的重要成员之一, 它能在多种类型的细胞上抑制由各种刺激所诱发的细胞死亡。粒细胞巨噬细胞集落刺激因子(GMCSF)具有刺激粒细胞
18、和巨噬细胞集落增长的能力, 其功能的发挥依赖于它与GMCSF特异性受体的结合。Antonella等5将人GMCSF与BclXL蛋白融合, 该融合蛋白可与人单核细胞/巨噬细胞和骨髓祖细胞的上的GMCSF受体结合诱导其增殖, 并使BclXL进入细胞抑制细胞的死亡, 加速细胞的增殖。2.3 细胞因子与抗原融合蛋白 某些细胞因子可以招募抗原提呈细胞(APC), 促进APC 的成熟和信号转导, 调节T细胞的功能, 从而提高机体对抗原的免疫应答。因此, 人们通过基因融合技术, 将细胞因子与抗原融合, 使其更好的发挥基因佐剂作用。肿瘤细胞表达的免疫球蛋白(独特型, Id)可以作为肿瘤特异性抗原, 在B细胞淋
19、巴瘤中已证明用免疫球蛋白的可变区(即独特型)免疫动物, 可保护动物免受随后的肿瘤攻击。Tao等从B淋巴瘤细胞(38C13)分离出Id, 将其与GMCSF基因融合, 构建了Id与GMCSF融合蛋白, Id的免疫原性显著增强, 可诱导出具有抗肿瘤作用的特异性抗Id抗体。随后Chen等又构建了Id IL2和Id IL4两种融合蛋白, 均具有比较高的免疫原性。用Id IL2融合蛋白进行免疫可产生高滴度的抗独特型抗体IgG2a和lgG3, 而Id IL4和Id GMCSF融合蛋白则无此作用。这3种融合蛋白都能诱导抗独特型抗体的产生, 且不需要载体蛋白和佐剂。杨登科等6构建了结核分枝杆菌的Ag85B和IL
20、2嵌合基因疫苗, 研究发现该融合蛋白具有Ag85B和IL2的双重功能活性, 两者融合后产生协同作用, 在体外促进了外周血单核细胞的增殖和Th1型细胞因子的分泌。Hitoki等7构建了IL12和鼠疫耶尔森菌F1V融合蛋白(IL12/F1V, 荚膜蛋白抗原(F1Ag), 毒力抗原(VAg)共表达基因疫苗, 研究发现, 用肺鼠疫攻毒后, IL12(低表达)/F1V相比IL12(低表达)/F1、 IL12(低表达)/V和IL12(低表达)/载体(vector) DNA疫苗而言, 80%的小鼠获得保护。Mark等8构建了豚鼠髓脂质碱性蛋白(guinea pig myelin basic protein,
21、 GPMBP; neuroantigen or NAg)的主要致脑炎肽和白细胞介素16(IL16)融合蛋白, 研究发现该融合蛋白是路易鼠实验性自身免疫性脑脊髓炎的有效抑制剂并证实IL16是研制致耐受性疫苗的最佳候选细胞因子。细胞因子与抗原融合产生的佐剂效应, 可能比游离的细胞因子产生的佐剂效应具有更多的优点。因而, 在疫苗研究中, 细胞因子作为免疫佐剂越来越受到人们的重视。2.4 细胞因子与抗体融合蛋白 将抗体分子的片段与细胞因子融合, 该融合蛋白不但结合了抗体与抗原特异性结合的特性, 还具有细胞因子的多功能活性, 从而可借助抗体将细胞因子导向到特定的靶部位, 使其高效发挥生物学功能, 减轻全
22、身毒副作用。IL2是免疫反应的重要介导分子, 也是重要的抗肿瘤细胞因子之一。在体外, IL2可促使细胞毒性T细胞、 NK细胞及辅助T细胞增殖、 诱导产生细胞毒性的细胞因子, 诱导LAK细胞增殖。抗体IL2融合蛋白可将IL2靶向肿瘤灶, 提高肿瘤局部IL2的浓度, 从而达到更好的抗肿瘤效应, 同时也有助于减轻IL2的毒性。Heuser等构建了抗黏蛋白的scFvFcIL2融合蛋白(C595 scFvFcIL2), 实验表明此融合蛋白能同时特异性地结合MUCI+的肿瘤细胞和CD25+的免疫效应细胞。体外试验还发现, 该融合蛋白能刺激活化的T细胞增殖, 介导静息的NK细胞对肿瘤细胞的杀伤。在免疫重建的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 融合 蛋白 柔性 linker 选择 教学内容
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。