有理数培优题(有答案)教学文稿.doc
《有理数培优题(有答案)教学文稿.doc》由会员分享,可在线阅读,更多相关《有理数培优题(有答案)教学文稿.doc(23页珍藏版)》请在咨信网上搜索。
1、此文档仅供收集于网络,如有侵权请联系网站删除有理数培优题基础训练题一、填空:1、在数轴上表示2的点到原点的距离等于( )。2、若a=a,则a( )0.3、任何有理数的绝对值都是( )。4、如果a+b=0,那么a、b一定是( )。5、将0.1毫米的厚度的纸对折20次,列式表示厚度是( )。6、已知,则( )7、的最小值是( )。8、在数轴上,点A、B分别表示,则线段AB的中点所表示的数是( )。9、若互为相反数,互为倒数,P的绝对值为3,则( )。10、若abc0,则的值是( ) .11、下列有规律排列的一列数:1、,其中从左到右第100个数是( )。二、解答问题:1、已知x+3=0,|y+5|
2、+4的值是4,z对应的点到-2对应的点的距离是7,求x 、y、 z这三个数两两之积的和。3、若的值恒为常数,求满足的条件及此时常数的值。4、若为整数,且,试求的值。5、计算: 6、应用拓展:将七只杯子放在桌上,使三只口朝上,四只口朝下。现要求每次翻转其中任意四只,使它们杯口朝向相反,问能否经有限次翻转后,让所有杯子杯口朝下?能力培训题知识点一:数轴例1:已知有理数在数轴上原点的右方,有理数在原点的左方,那么( )A B C D拓广训练:1、如图为数轴上的两点表示的有理数,在中,负数的个数有( )(“祖冲之杯”邀请赛试题)A1 B2 C3 D43、把满足中的整数表示在数轴上,并用不等号连接。2、
3、利用数轴能直观地解释相反数;例2:如果数轴上点A到原点的距离为3,点B到原点的距离为5,那么A、B两点的距离为 。拓广训练:1、在数轴上表示数的点到原点的距离为3,则2、已知数轴上有A、B两点,A、B之间的距离为1,点A与原点O的距离为3,那么所有满足条件的点B与原点O的距离之和等于 。(北京市“迎春杯”竞赛题)3、利用数轴比较有理数的大小;例3:已知且,那么有理数的大小关系是 。(用“”号连接)(北京市“迎春杯”竞赛题)拓广训练:1、 若且,比较的大小,并用“”号连接。例4:已知比较与4的大小 拓广训练:1、已知,试讨论与3的大小 2、已知两数,如果比大,试判断与的大小4、利用数轴解决与绝对
4、值相关的问题。例5: 有理数在数轴上的位置如图所示,式子化简结果为( )A B C D拓广训练:1、有理数在数轴上的位置如图所示,则化简的结果为 。2、已知,在数轴上给出关于的四种情况如图所示,则成立的是 。 3、已知有理数在数轴上的对应的位置如下图:则化简后的结果是( )(湖北省初中数学竞赛选拨赛试题)A B C D三、培优训练1、已知是有理数,且,那以的值是( )A B C或 D或10A2B5C2、(07乐山)如图,数轴上一动点向左移动2个单位长度到达点,再向右移动5个单位长度到达点若点表示的数为1,则点表示的数为()3、如图,数轴上标出若干个点,每相邻两点相距1个单位,点A、B、C、D对
5、应的数分别是整数且,那么数轴的原点应是( )AA点 BB点 CC点 DD点4、数所对应的点A,B,C,D在数轴上的位置如图所示,那么与的大小关系是( )A B C D不确定的5、不相等的有理数在数轴上对应点分别为A,B,C,若,那么点B( )A在A、C点右边 B在A、C点左边 C在A、C点之间 D以上均有可能6、设,则下面四个结论中正确的是( )(全国初中数学联赛题)A没有最小值 B只一个使取最小值C有限个(不止一个)使取最小值 D有无穷多个使取最小值7、在数轴上,点A,B分别表示和,则线段AB的中点所表示的数是 。8、若,则使成立的的取值范围是 。9、是有理数,则的最小值是 。10、已知为有
6、理数,在数轴上的位置如图所示:且求的值。11、(南京市中考题)(1)阅读下面材料:点A、B在数轴上分别表示实数,A、B两点这间的距离表示为,当A、B两点中有一点在原点时,不妨设点A在原点,如图1,;当A、B两点都不在原点时,如图2,点A、B都在原点的右边;如图3,点A、B都在原点的左边;如图4,点A、B在原点的两边。综上,数轴上A、B两点之间的距离。(2)回答下列问题:数轴上表示2和5两点之间的距离是 ,数轴上表示-2和-5的两点之间的距离是 ,数轴上表示1和-3的两点之间的距离是 ;数轴上表示和-1的两点A和B之间的距离是 ,如果,那么为 ;当代数式取最小值时,相应的的取值范围是 ;求的最小
7、值。聚焦绝对值一、阅读与思考绝对值是初中代数中的一个重要概念,引入绝对值概念之后,对有理数、相反数以及后续要学习的算术根可以有进一步的理解;绝对值又是初中代数中一个基本概念,在求代数式的值、代数式的化简、解方程与解不等式时,常常遇到含有绝对值符号的问题,理解、掌握绝对值概念应注意以下几个方面:1、脱去绝值符号是解绝对值问题的切入点。脱去绝对值符号常用到相关法则、分类讨论、数形结合等知识方法。去绝对值符号法则:2、恰当地运用绝对值的几何意义从数轴上看表示数的点到原点的距离;表示数、数的两点间的距离。3、灵活运用绝对值的基本性质 二、知识点反馈1、去绝对值符号法则例1:已知且那么 。拓广训练:1、
8、已知且,那么 。(北京市“迎春杯”竞赛题)2、若,且,那么的值是( )A3或13 B13或-13 C3或-3 D-3或-132、恰当地运用绝对值的几何意义例2: 的最小值是( )A2 B0 C1 D-1解法1、分类讨论当时,;当时,;当时。比较可知,的最小值是2,故选A。解法2、由绝对值的几何意义知表示数所对应的点与数1所对应的点之间的距离;表示数所对应的点与数-1所对应的点之间的距离;的最小值是指点到1与-1两点距离和的最小值。如图易知当时,的值最小,最小值是2故选A。拓广训练:1、 已知的最小值是,的最大值为,求的值。三、培优训练1、如图,有理数在数轴上的位置如图所示:则在中,负数共有(
9、)(湖北省荆州市竞赛题)A3个 B1个 C4个 D2个2、若是有理数,则一定是( )A零 B非负数 C正数 D负数3、如果,那么的取值范围是( )A B C D4、是有理数,如果,那么对于结论(1)一定不是负数;(2)可能是负数,其中( )(第15届江苏省竞赛题)A只有(1)正确 B只有(2)正确 C(1)(2)都正确 D(1)(2)都不正确5、已知,则化简所得的结果为( )A B C D6、已知,那么的最大值等于( )A1 B5 C8 D97、已知都不等于零,且,根据的不同取值,有( )A唯一确定的值 B3种不同的值 C4种不同的值 D8种不同的值8、满足成立的条件是( )(湖北省黄冈市竞赛
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 有理数 培优题 答案 教学 文稿
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。