2020-2021学年高中人教B版数学必修四课时作业:第三章--章末检测(B).docx
《2020-2021学年高中人教B版数学必修四课时作业:第三章--章末检测(B).docx》由会员分享,可在线阅读,更多相关《2020-2021学年高中人教B版数学必修四课时作业:第三章--章末检测(B).docx(5页珍藏版)》请在咨信网上搜索。
第三章 三角恒等变换(B) (时间:120分钟 满分:150分) 一、选择题(本大题共12小题,每小题5分,共60分) 1.sin 15°cos 75°+cos 15°sin 105°等于( ) A.0 B. C. D.1 2.若函数f(x)=sin2x-(x∈R),则f(x)是( ) A.最小正周期为的奇函数 B.最小正周期为π的奇函数 C.最小正周期为2π的偶函数 D.最小正周期为π的偶函数 3.已知α∈(,π),sin α=,则tan(α+)等于( ) A. B.7 C.- D.-7 4.函数f(x)=sin x-cos x(x∈[-π,0])的单调递增区间是( ) A.[-π,-] B.[-,-] C.[-,0] D.[-,0] 5.化简:的结果为( ) A.1 B. C. D.tan θ 6.若f(sin x)=3-cos 2x,则f(cos x)等于( ) A.3-cos 2x B.3-sin 2x C.3+cos 2x D.3+sin 2x 7.若函数f(x)=sin(x+)+asin(x-)的一条对称轴方程为x=,则a等于( ) A.1 B. C.2 D.3 8.函数y=sin 2x+sin2x,x∈R的值域是( ) A.[-,] B.[-+,+] C.[-,] D.[--,-] 9.若3sin θ=cos θ,则cos 2θ+sin 2θ的值等于( ) A.- B. C.- D. 10.已知3cos(2α+β)+5cos β=0,则tan(α+β)tan α的值为( ) A.±4 B.4 C.-4 D.1 11.若cos =,sin =-,则角θ的终边确定落在直线( )上. A.7x+24y=0 B.7x-24y=0 C.24x+7y=0 D.24x-7y=0 12.使奇函数f(x)=sin(2x+θ)+cos(2x+θ)在[-,0]上为减函数的θ的值为( ) A.- B.- C. D. 二、填空题(本大题共4小题,每小题5分,共20分) 13.函数f(x)=sin2(2x-)的最小正周期是____________. 14.已知sin αcos β=1,则sin(α-β)=________. 15.若0<α<<β<π,且cos β=-,sin(α+β)=,则cos α=________. 16.函数y=sin(x+10°)+cos(x+40°),(x∈R)的最大值是________. 三、解答题(本大题共6小题,共70分) 17.(10分)已知sin(α+)=-,α∈(0,π). (1)求的值; (2)求cos(2α-)的值. 18.(12分)已知函数f(x)=2cos xsin x+2cos2x-. (1)求函数f(x)的最小正周期; (2)求函数f(x)的最大值和最小值及相应的x的值; (3)求函数f(x)的单调增区间. 19.(12分)已知向量a=(cos ,sin ),b=(cos ,-sin ),且x∈[-,]. (1)求a·b及|a+b|; (2)若f(x)=a·b-|a+b|,求f(x)的最大值和最小值. 20.(12分)已知△ABC的内角B满足2cos 2B-8cos B+5=0,若=a,=b且a,b满足:a·b=-9,|a|=3,|b|=5,θ为a,b的夹角. (1)求角B; (2)求sin(B+θ). 21.(12分)已知向量m=(-1,cos ωx+sin ωx),n=(f(x),cos ωx),其中ω>0,且m⊥n,又函数f(x)的图象任意两相邻对称轴的间距为. (1)求ω的值; (2)设α是第一象限角,且f(α+)=,求的值. 22.(12分)已知函数f(x)=sin 2xsin φ+cos2xcos φ-sin(+φ)(0<φ<π),其图象过点(,). (1)求φ的值; (2)将函数y=f(x)的图象上各点的横坐标缩短到原来的,纵坐标不变,得到函数y=g(x)的图象,求函数g(x)在[0,]上的最大值和最小值. 答案 1. D [原式=sin 15°cos 75°+cos 15°sin 75°=sin 90°=1.] 2. D [f(x)=sin2x-=(2sin2x-1) =-cos 2x, ∴T==π,f(x)为偶函数.] 3. A [∵α∈(,π),sin α=, ∴cos α=-, tan α==-. ∴tan(α+)===.] 4. D [f(x)=sin x-cos x=2sin(x-). 令2kπ-≤x-≤2kπ+(k∈Z), 得2kπ-≤x≤2kπ+(k∈Z), 令k=0得-≤x≤. 由此可得[-,0]符合题意.] 5. B [原式== =sin 60°=.] 6. C [f(sin x)=3-(1-2sin2x)=2+2sin2x, ∴f(x)=2x2+2, ∴f(cos x)=2cos2x+2=1+cos 2x+2=3+cos 2x.] 7. B [f(x)=sin(x+)-asin(-x) =sin(x+)-acos(+x) =sin(x+-φ) ∴f()=sin +asin =a+=. 解得a=.] 8. B [y=sin 2x+sin2x=sin 2x+ =sin 2x-cos 2x+ =sin(2x-)+, ∵x∈R, ∴-1≤sin(2x-)≤1, ∴y∈[-+,+].] 9. B [∵3sin θ=cos θ,∴tan θ=. cos 2θ+sin 2θ=cos2θ-sin2θ+2sin θcos θ = ===.] 10.C [3cos(2α+β)+5cos β =3cos(α+β)cos α-3sin(α+β)sin α+5cos(α+β)cos α+5sin(α+β)sin α=0, ∴2sin(α+β)sin α=-8cos(α+β)cos α, ∴tan(α+β)tan α=-4.] 11.D [cos =,sin =-,tan =-, ∴tan θ===. ∴角θ的终边在直线24x-7y=0上.] 12.D [∵f(x)为奇函数,∴f(0)=sin θ+cos θ=0. ∴tan θ=-.∴θ=kπ-,(k∈Z). ∴f(x)=2sin(2x+θ+)=±2sin 2x. ∵f(x)在[-,0]上为减函数, ∴f(x)=-2sin 2x,∴θ=.] 13. 解析 ∵f(x)=[1-cos(4x-)] =-sin 4x ∴T==. 14.1 解析 ∵sin αcos β=1, ∴sin α=cos β=1,或sin α=cos β=-1, ∴cos α=sin β=0. ∴sin(α-β)=sin αcos β-cos αsin β=sin αcos β=1. 15. 解析 cos β=-,sin β=, sin(α+β)=,cos(α+β)=-, 故cos α=cos[(α+β)-β] =cos(α+β)cos β+sin(α+β)sin β =(-)×(-)+×=. 16.1 解析 令x+10°=α,则x+40°=α+30°, ∴y=sin α+cos(α+30°) =sin α+cos αcos 30°-sin αsin 30° =sin α+cos α =sin(α+60°). ∴ymax=1. 17.解 (1)sin(α+)=-,α∈(0,π) ⇒cos α=-,α∈(0,π)⇒sin α=. ==-. (2)∵cos α=-,sin α=⇒sin 2α=-,cos 2α=-. cos(2α-)=-cos 2α+sin 2α=-. 18.解 (1)原式=sin 2x+cos 2x =2(sin 2x+cos 2x) =2(sin 2xcos +cos 2xsin ) =2sin(2x+). ∴函数f(x)的最小正周期为π. (2)当2x+=2kπ+,即x=kπ+(k∈Z)时,f(x)有最大值为2. 当2x+=2kπ-,即x=kπ-(k∈Z)时,f(x)有最小值为-2. (3)要使f(x)递增,必需使2kπ-≤2x+≤2kπ+(k∈Z), 解得kπ-≤x≤kπ+(k∈Z). ∴函数f(x)的递增区间为[kπ-,kπ+](k∈Z). 19.解 (1)a·b=cos cos -sin sin =cos 2x, |a+b|= ==2|cos x|, ∵x∈[-,],∴cos x>0, ∴|a+b|=2cos x. (2)f(x)=cos 2x-2cos x=2cos2x-2cos x-1 =2(cos x-)2-. ∵x∈[-,].∴≤cos x≤1, ∴当cos x=时,f(x)取得最小值-;当cos x=1时,f(x)取得最大值-1. 20.解 (1)2(2cos2B-1)-8cos B+5=0, 即4cos2B-8cos B+3=0,得cos B=. 又B为△ABC的内角, ∴B=60°. (2)∵cos θ==-, ∴sin θ=. ∴sin(B+θ)=sin Bcos θ+cos Bsin θ=. 21.解 (1)由题意,得m·n=0,所以 f(x)=cos ωx·(cos ωx+sin ωx)=+ =sin(2ωx+)+. 依据题意知,函数f(x)的最小正周期为3π. 又ω>0,所以ω=. (2)由(1)知f(x)=sin(+)+,所以f(α+) =sin(α+)+=cos α+=. 解得cos α=. 由于α是第一象限角,故sin α=. 所以== ==-. 22.解 (1)由于f(x)=sin 2xsin φ+cos2xcos φ-sin(+φ)(0<φ<π), 所以f(x)=sin 2xsin φ+cos φ-cos φ =sin 2xsin φ+cos 2xcos φ =(sin 2xsin φ+cos 2xcos φ) =cos(2x-φ). 又函数图象过点(,), 所以=cos(2×-φ), 即cos(-φ)=1, 又0<φ<π,所以φ=. (2)由(1)知f(x)=cos(2x-),将函数y=f(x)的图象上各点的横坐标缩短到原来的,纵坐标不变,得到函数y=g(x)的图象,可知g(x)=f(2x)=cos(4x-), 由于x∈[0,],所以4x∈[0,π], 因此4x-∈[-,], 故-≤cos(4x-)≤1. 所以y=g(x)在[0,]上的最大值和最小值分别为和-.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- -学案导学设计 学案导学 设计 2020 2021 学年 中人 数学 必修 课时 作业 第三 检测
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文