2022届-数学一轮(理科)-浙江专用-课时作业-第八章-解析几何-阶段回扣练8-.docx
《2022届-数学一轮(理科)-浙江专用-课时作业-第八章-解析几何-阶段回扣练8-.docx》由会员分享,可在线阅读,更多相关《2022届-数学一轮(理科)-浙江专用-课时作业-第八章-解析几何-阶段回扣练8-.docx(6页珍藏版)》请在咨信网上搜索。
阶段回扣练8 平面解析几何 (时间:120分钟 满分:150分) 一、选择题 1.(2021·北京西城区模拟)直线y=2x为双曲线C:-=1(a>0,b>0)的一条渐近线,则双曲线C的离心率是 ( ) A. B. C. D. 解析 由题意知=2,得b=2a,c=a,所以e==,故选C. 答案 C 2.已知圆C经过A(5,2),B(-1,4)两点,圆心在x轴上,则圆C的方程是 ( ) A.(x-2)2+y2=13 B.(x+2)2+y2=17 C.(x+1)2+y2=40 D.(x-1)2+y2=20 解析 设圆心坐标为C(a,0),则|AC|=|BC|,即=,解得a=1,所以半径r===2,所以圆C的方程是(x-1)2+y2=20. 答案 D 3.(2022·南昌模拟)方程(x2+y2-2x)·=0表示的曲线是 ( ) A.一个圆和一条直线 B.一个圆和一条射线 C.一个圆 D.一条直线 解析 依题意,题中的方程等价于①x+y-3=0或②留意到圆x2+y2-2x=0上的点均位于直线x+y-3=0的左下方区域,即圆x2+y2-2x=0上的点均不满足x+y-3≥0,②不表示任何图形,因此题中的方程表示的曲线是直线x+y-3=0,故选D. 答案 D 4.(2022·东北三省四市联考)以椭圆+=1的焦点为顶点,以椭圆的顶点为焦点的双曲线的离心率为 ( ) A. B. C. D. 解析 由题意知双曲线的a=,c=2,所以e===. 答案 B 5.(2021·福州质量检测)若直线x-y+2=0与圆C:(x-3)2+(y-3)2=4相交于A,B两点,则·的值为 ( ) A.-1 B.0 C.1 D.10 解析 依题意,圆心C(3,3)到直线x-y+2=0的距离等于=,cos=,=45°,∠ACB=90°,·=0,故选B. 答案 B 6.(2022·温州诊断)已知实数1,m,4构成一个等比数列,则圆锥曲线+y2=1的离心率为 ( ) A. B. C.或 D.或3 解析 由已知得m=±2.当m=2时,该圆锥曲线表示椭圆,此时a=, b=1,c=1,e=;当m=-2时,该圆锥曲线表示双曲线,此时a=1,b=,c=,e=,故选C. 答案 C 7. (2022·乐清调研)已知点F1,F2分别为双曲线-=1(a>0,b>0)的左、右焦点,P为双曲线左支上的任意一点,且|PF2|=2|PF1|,若△PF1F2为等腰三角形,则双曲线的离心率为 ( ) A.3 B. C.2 D. 解析 依题意得|PF2|-|PF1|=2a,又|PF2|=2|PF1|,所以|PF2|=4a,|PF1|=2a.又△PF1F2为等腰三角形,所以|PF2|=|F1F2|,即4a=2c,所以双曲线的离心率为e==2,故选C. 答案 C 8.(2022·海宁模拟)已知双曲线x2-=1的左顶点为A1,右焦点为F2,P为双曲线右支上一点,则·的最小值为 ( ) A.-2 B.- C.1 D.0 解析 设点P(x,y),其中x≥1.依题意得A1(-1,0),F2(2,0),则有=x2-1,y2=3(x2-1),·=(-1-x,-y)·(2-x,-y)=(x+1)(x-2)+y2=x2+3(x2-1)-x-2=4x2-x-5=42-,其中x≥1.因此,当x=1时,·取得最小值-2,选A. 答案 A 二、填空题 9.(2022·成都诊断)已知直线l1:ax+(3-a)y+1=0,l2:2x-y=0.若l1⊥l2,则实数a的值为________. 解析 依题意得=-,解得a=1. 答案 1 10.(2021·济南模拟)已知直线3x-4y+a=0与圆x2-4x+y2-2y+1=0相切,则实数a的值为________. 解析 圆的标准方程为(x-2)2+(y-1)2=4,由直线3x-4y+a=0与圆(x-2)2+(y-1)2=4相切得圆心(2,1)到直线的距离d等于半径,所以d==2,解得a=-12或8. 答案 -12或8 11.(2021·金华检测)已知双曲线S与椭圆+=1的焦点相同,假如y=x是双曲线S的一条渐近线,那么双曲线S的方程为________. 解析 由题意可得双曲线S的焦点坐标是(0,±5).又y=x是双曲线S的一条渐近线,所以c=5,=,a2+b2=c2,解得a=3,b=4,所以双曲线S的标准方程为-=1. 答案 -=1 12.过椭圆+=1(a>b>0)的左顶点A且斜率为1的直线与椭圆的另一个交点为M,与y轴的交点为B,若|AM|=|MB|,则该椭圆的离心率为________. 解析 由题意知A点的坐标为(-a,0), 设直线的方程为y=x+a, ∴B点的坐标为(0,a),故M点的坐标为, 代入椭圆方程得a2=3b2,∴2a2=3c2,∴e=. 答案 13.(2022·淄博二模)若双曲线-=1(a>0,b>0)的左、右焦点分别为F1和F2,线段F1F2被抛物线y2=2bx的焦点分成5∶3两段,则此双曲线的离心率为________. 解析 抛物线的焦点坐标为,由题意知 =,c=2b,所以c2=4b2=4(c2-a2),即4a2=3c2,所以2a=c,所以e===. 答案 14.(2022·湖州一模)已知抛物线y2=4px(p>0)与双曲线-=1(a>0,b>0)有相同的焦点F,点A是两曲线的交点,且AF⊥x轴,则双曲线的离心率为________. 解析 依题意,得F(p,0),由于AF⊥x轴,设A(p,y),y>0,y2=4p2,所以y=2p.所以A(p,2p).又点A在双曲线上,所以-=1.又由于c=p,所以-=1,化简,得c4-6a2c2+a4=0,即4-62+1=0.所以e2=3+2,e=+1. 答案 +1 15.(2022·山东卷)已知双曲线-=1(a>0,b>0)的焦距为2c,右顶点为A,抛物线x2=2py(p>0)的焦点为F.若双曲线截抛物线的准线所得线段长为2c,且|FA|=c,则双曲线的渐近线方程为________. 解析 c2=a2+b2. ① 由双曲线截抛物线的准线所得线段长为2c知, 双曲线过点, 即-=1. ② 由|FA|=c,得c2=a2+, ③ 由①③得p2=4b2. ④ 将④代入②,得=2. ∴=2,即=1, 故双曲线的渐近线方程为y=±x,即x±y=0. 答案 x±y=0 三、解答题 16.(2022·安徽卷)设F1,F2分别是椭圆E:+=1(a>b>0)的左、右焦点,过点F1的直线交椭圆E于A,B两点,|AF1|=3|F1B|. (1)若|AB|=4,△ABF2的周长为16,求|AF2|; (2)若cos∠AF2B=,求椭圆E的离心率. 解 (1)由|AF1|=3|F1B|,|AB|=4, 得|AF1|=3,|F1B|=1. 由于△ABF2的周长为16,所以由椭圆定义可得4a=16,|AF1|+|AF2|=2a=8.故|AF2|=2a-|AF1|=8-3=5. (2)设|F1B|=k,则k>0且|AF1|=3k,|AB|=4k. 由椭圆定义可得, |AF2|=2a-3k,|BF2|=2a-k. 在△ABF2中,由余弦定理可得, |AB|2=|AF2|2+|BF2|2-2|AF2|·|BF2|cos∠AF2B, 即(4k)2=(2a-3k)2+(2a-k)2-(2a-3k)·(2a-k). 化简可得(a+k)(a-3k)=0,而a+k>0,故a=3k. 于是有|AF2|=3k=|AF1|,|BF2|=5k. 因此|BF2|2=|F2A|2+|AB|2, 可得F1A⊥F2A, △AF1F2为等腰直角三角形. 从而c=a,所以椭圆E的离心率e==. 17.已知椭圆C:+=1(a>b>0)的离心率为,椭圆C的短轴的一个端点P到焦点的距离为2. (1)求椭圆C的方程; (2)已知直线l:y=kx+与椭圆C交于A,B两点,是否存在实数k使得以线段AB为直径的圆恰好经过坐标原点O?若存在,求出k的值;若不存在,请说明理由. 解 (1)设椭圆的焦半距为c,则由题设,得 解得所以b2=a2-c2=4-3=1, 故所求椭圆C的方程为+x2=1. (2)存在实数k使得以线段AB为直径的圆恰好经过坐标原点O. 理由如下: 设点A(x1,y1),B(x2,y2), 将直线l 的方程y=kx+代入+x2=1, 并整理,得(k2+4)x2+2kx-1=0.(*) 则x1+x2=-,x1x2=-. 由于以线段AB为直径的圆恰好经过坐标原点O, 所以·=0,即x1x2+y1y2=0. 又y1y2=k2x1x2+k(x1+x2)+3, 于是--+3=0,解得k=±, 经检验知:此时(*)式的Δ>0,符合题意. 所以当k=±时,以线段AB为直径的圆恰好经过坐标原点O. 18.(2022·浙江卷改编)如图所示,在直角坐标系xOy中,点P(1,)到抛物线C:y2=2px(p>0)的准线的距离为.点M(t,1)是C上的定点,A,B是C上的两动点,且线段AB的中点Q(m,n)在直线OM上. (1)求曲线C的方程及t的值. (2)记d=,求d的最大值. 解 (1)y2=2px(p>0)的准线x=-, ∴1-(-)=,p=, ∴抛物线C的方程为y2=x. 又点M(t,1)在曲线C上,∴t=1. (2)由(1)知,点M(1,1),从而n=m,即点Q(m,m), 依题意,直线AB的斜率存在,且不为0, 设直线AB的斜率为k(k≠0). 且A(x1,y1),B(x2,y2), 由得(y1-y2)(y1+y2)=x1-x2,故k·2m=1, 所以直线AB的方程为y-m=(x-m), 即x-2my+2m2-m=0. 由消去x, 整理得y2-2my+2m2-m=0, 所以Δ=4m-4m2>0,y1+y2=2m,y1y2=2m2-m. 从而|AB|= ·|y1-y2|=· =2 ∴d==2≤m+(1-m)=1, 当且仅当m=1-m,即m=时,上式等号成立, 又m=满足Δ=4m-4m2>0.∴d的最大值为1. 19.在平面直角坐标系xOy中,已知椭圆C:+=1(a>b>0)的离心率e= ,且椭圆C上的点到Q(0,2)的距离的最大值为3. (1)求椭圆C的方程; (2)在椭圆C上,是否存在点M(m,n),使得直线l:mx+ny=1与圆O:x2+y2=1相交于不同的两点A,B,且△OAB的面积最大?若存在,求出点M的坐标及相对应的△OAB的面积;若不存在,请说明理由. 解 (1)由于e= ==, 所以a2=3b2,即椭圆C的方程可写为+=1. 设P(x,y)为椭圆C上任意给定的一点, 则d== =(-b≤y≤b). 当-b≤-1,即b≥1,dmax==3得b=1; 当-b>-1,即b<1,dmax==3得b=1(舍). ∴b=1,a=, 故所求椭圆C的方程为+y2=1. (2)存在点M满足要求,使△OAB的面积最大.理由如下: 假设存在满足条件的点M,由于直线l:mx+ny=1与圆O:x2+y2=1相交于不同的两点A,B,则圆心O到l的距离d=<1. 由于点M(m,n)在椭圆C上,所以+n2=1<m2+n2, 于是0<m2≤3. 由于|AB|=2=2 , 所以S△OAB=·|AB|·d= =≤ =, 当且仅当1=m2时等号成立,所以m2=∈(0,3]. 因此当m=±,n=±时等号成立. 所以满足要求的点M的坐标为,,或,此时对应的三角形的面积均达到最大值. 20.(2022·浙江卷)已知△ABP的三个顶点都在抛物线C:x2=4y上,F为抛物线C的焦点,点M为AB的中点,=3. (1)若||=3,求点M的坐标; (2)求△ABP面积的最大值. 解 (1)由题意知焦点F(0,1),准线方程为y=-1. 设P(x0,y0),由抛物线定义知|PF|=y0+1,得到y0=2,所以P(2,2)或 P(-2,2). 由=3,分别得M或M. (2)设直线AB的方程为y=kx+m,点A(x1,y1),B(x2,y2),P(x0,y0). 由得x2-4kx-4m=0. 于是Δ=16k2+16m>0,x1+x2=4k,x1x2=-4m, 所以AB中点M的坐标为(2k,2k2+m). 由=3,得(-x0,1-y0)=3(2k,2k2+m-1), 所以 由x=4y0,得k2=-m+. 由Δ>0,k2≥0,得-<m≤. 又由于|AB|=4·, 点F(0,1)到直线AB的距离为d=. 所以S△ABP=4S△ABF=8|m-1| = . 记f(m)=3m3-5m2+m+1. 令f′(m)=9m2-10m+1=0, 解得m1=,m2=1. 可得f(m)在上是增函数,在上是减函数,在上是增函数. 又f=>f. 所以,当m=时,f(m)取到最大值, 此时k=±. 所以,△ABP面积的最大值为.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 创新设计 创新 设计 2022 数学 一轮 理科 浙江 专用 课时 作业 第八 解析几何 阶段 回扣
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文