2021高考数学(江苏专用-理科)二轮专题整合:1-2-3平面向量的线性运算及综合应用.docx
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 创新设计 创新 设计 2021 高考 数学 江苏 专用 理科 二轮 专题 整合 平面 向量 线性 运算 综合 应用
- 资源描述:
-
第3讲 平面对量的线性运算及综合应用 一、填空题 1.(2022·重庆卷改编)已知向量a=(k,3),b=(1,4),c=(2,1),且(2a-3b)⊥c,则实数k=________. 解析 由于2a-3b=(2k-3,-6),且(2a-3b)⊥c,所以(2a-3b)·c=2(2k-3)-6=0,解得k=3. 答案 3 2.(2022·河南十所名校联考)在△ABC中,M是AB边所在直线上任意一点,若=-2+λ,则λ=________. 解析 由点A,B,M三点共线知:-2+λ=1,所以λ=3. 答案 3 3.(2022·龙岩期末考试)在平面直角坐标系中,菱形OABC的两个顶点为O(0,0),A(1,1),且·=1,则·=________. 解析 依题意,||=||=||=,·=||||cos ∠AOC=1,cos ∠AOC=,∠AOC=,则||=||=||=,∠BAC=,·=||||cos ∠BAC=1. 答案 1 4.(2021·天一、淮阴、海门中学联考)在△ABC中,已知·=4,·=-12,则||=________. 解析 将·=4,·=-12两式相减得·(-)=2=16,则||=4. 答案 4 5.(2022·山东卷)在△ABC中,已知·=tan A,当A=时,△ABC的面积为________. 解析 由A=,·=tan A, 得||·||·cos A=tan A, 即||·||×=,∴||·||=, ∴S△ABC=||·||·sin A=××=. 答案 6.已知非零向量a,b,c满足a+b+c=0,向量a与b的夹角为60°,且|a|=|b|=1,则向量a与c的夹角为________. 解析 由于a+b+c=0,所以c=-(a+b).所以|c|2=(a+b)2=a2+b2+2a·b=2+2cos 60°=3.所以|c|=. 又c·a=-(a+b)·a=-a2-a·b=-1-cos 60°= -,设向量c与a的夹角为θ,则cos θ===-.又0°≤θ≤180°,所以θ=150°. 答案 150° 7. 如图,在△ABC中,∠C=90°,且AC=BC=3,点M满足=2 ,则·=________. 解析 法一 如图建立平面直角坐标系. 由题意知:A(3,0),B(0,3), 设M(x,y),由=2, 得解得即M点坐标为(2,1), 所以·=(2,1)·(0,3)=3. 法二 ·=(+)·=2+×=2+·(-)=2=3. 答案 3 8.(2022·杭州质量检测)在△AOB中,G为△AOB的重心,且∠AOB=60°,若·=6,则||的最小值是________. 解析 如图,在△AOB中,==×(+)=(+), 又·=||||·cos 60°=6, ∴||||=12, ∴||2=(+)2=(||2+||2+2·)=(||2+||2+12)≥×=×36=4(当且仅当||=||时取等号).∴||≥2,故||的最小值是2. 答案 2 二、解答题 9.(2021·江苏卷)已知向量a=(cos α,sin α),b=(cos β,sin β),0<β<α<π. (1)若|a-b|=,求证:a⊥b; (2)设c=(0,1),若a+b=c,求α,β的值. (1)证明 由|a-b|=,即(cos α-cos β)2+(sin α-sin β)2=2,整理得cos αcos β+sin αsin β=0,即a·b=0,因此a⊥b. (2)解 由已知条件 cos β=-cos α=cos(π-α),由0<α<π,得0<π-α<π, 又0<β<π,故β=π-α.则sin α+sin (π-α)=1, 即sin α=,故α=或α=. 当α=时,β=(舍去),当α=时,β=. 所以,α,β的值分别为,. 10.已知向量m=(sin x,-1),n=(cos x,3). (1)当m∥n时,求的值; (2)已知在锐角△ABC中,a,b,c分别为角A,B,C的对边,c=2asin(A+B),函数f(x)=(m+n)·m,求 f的取值范围. 解 (1)由m∥n,可得3sin x=-cos x, 于是tan x=-,∴===-. (2)在△ABC中A+B=π-C,于是 sin(A+B)=sin C, 由正弦定理,得sin C=2sin Asin C, ∵sin C≠0,∴sin A=.又△ABC为锐角三角形, ∴A=,于是<B<. ∵f(x)=(m+n)·m=(sin x+cos x,2)·(sin x,-1)=sin2 x+sin xcos x-2=+sin 2x-2=sin-, ∴f=sin-=sin 2B-.由<B<,得<2B<π, ∴0<sin 2B≤1,-<sin 2B-≤-, 即f(B+)∈. 11.(2022·南京、盐城模拟)如图所示,A,B分别是单位圆与x轴、y轴正半轴的交点,点P在单位圆上,∠AOP=θ(0<θ<π),C点坐标为(-2,0),平行四边形OAQP的面积为S. (1)求·+S的最大值; (2)若CB∥OP,求sin的值. 解 (1)由已知,得A(1,0),B(0,1),P(cos θ,sin θ), 由于四边形OAQP是平行四边形, 所以=+=(1,0)+(cos θ,sin θ) =(1+cos θ,sin θ). 所以·=1+cos θ. 又平行四边形OAQP的面积为 S=||·||sin θ=sin θ, 所以·+S=1+cos θ+sin θ=sin+1. 又0<θ<π, 所以当θ=时,·+S的最大值为+1. (2)由题意,知=(2,1), =(cos θ,sin θ), 由于CB∥OP,所以cos θ=2sin θ. 又0<θ<π,cos2θ+sin2θ=1, 解得sin θ=,cos θ=, 所以sin2 θ=2sin θcos θ=,cos 2θ=cos2θ-sin2θ=. 所以sin=sin 2θcos-cos 2θsin =×-×=.展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




2021高考数学(江苏专用-理科)二轮专题整合:1-2-3平面向量的线性运算及综合应用.docx



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/3833373.html