2021年高考数学(四川专用-理)一轮复习考点突破:第2篇-第5讲-指数与指数函数.docx
《2021年高考数学(四川专用-理)一轮复习考点突破:第2篇-第5讲-指数与指数函数.docx》由会员分享,可在线阅读,更多相关《2021年高考数学(四川专用-理)一轮复习考点突破:第2篇-第5讲-指数与指数函数.docx(7页珍藏版)》请在咨信网上搜索。
1、第5讲指数与指数函数最新考纲1了解指数函数模型的实际背景2理解有理数指数幂的含义,了解实数指数幂的意义,把握幂的运算3理解指数函数的概念及其单调性,把握指数函数图象通过的特殊点,会画底数为2,3,10,的指数函数的图象4体会指数函数是一类重要的函数模型.知 识 梳 理1根式(1)根式的概念根式的概念符号表示备注假如xna,那么x叫做a的n次方根n1且nN*当n为奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数零的n次方根是零当n为偶数时,正数的n次方根有两个,它们互为相反数负数没有偶次方根(2)两个重要公式n为偶数()na.2有理数指数幂(1)幂的有关概念零指数幂:a01(a0)负整
2、数指数幂:ap(a0,pN*);正分数指数幂:(a0,m,n N*,且n1);负分数指数幂: (a0,m,nN*,且n1);0的正分数指数幂等于0,0的负分数指数幂无意义(2)有理数指数幂的性质arasars(a0,r,sQ);(ar)sars(a0,r,sQ);(ab)rarbr(a0,b0,rQ)3指数函数的图象与性质yaxa10a1图象定义域R值域(0,)性质过定点(0,1)当x0时,y1;x0时,0y1当x0时,0y1;x0时,y1在(,)上是增函数在(,)上是减函数辨 析 感 悟1指数幂的应用辨析(1)()42.()(2)(教材探究改编)()a.()2对指数函数的理解(3)函数y32
3、x是指数函数()(4)yx是R上的减函数()(5)指数函数在同始终角坐标系中的图象的相对位置与底数的大小关系如图,无论在y轴的左侧还是右侧图象从上到下相应的底数由大变小()(6)(2021金华调研改编)已知函数f(x)4ax1(a0且a1)的图象恒过定点P,则点P的坐标是(1,5)()感悟提升1“”与“n”的区分当n为奇数时,或当n为偶数且a0时,a,当n为偶数,且a0时,a,而()na恒成立如(1)中不成立,(2)中.2两点留意一是指数函数的单调性是底数a的大小打算的,因此解题时通常对底数a按0a1和a1进行分类争辩,如(4);二是指数函数在同始终角坐标系中的图象与底数的大小关系,在y轴右侧
4、,图象从上到下相应的底数由大变小,在y轴左侧,图象从上到下相应的底数由小变大如(5).同学用书第22页考点一指数幂的运算【例1】 (1)计算:0.062 50.25;(2)若3,求的值解(1)原式2.(2)由3,得xx129,xx17,x2x2249,x2x247.3327918,原式.规律方法 进行指数幂运算时,一般化负指数为正指数,化根式为分数指数幂,化小数为分数,同时兼顾运算的挨次需留意下列问题:(1)对于含有字母的化简求值的结果,一般用分数指数幂的形式表示;(2)应用平方差、完全平方公式及apap1(a0)简化运算答案C考点二指数函数的图象及其应用【例2】 (1)(2022郑州模拟)已
5、知函数f(x)2x2,则函数y|f(x)|的图象可能是()(2)下列各式比较大小正确的是()A1.72.51.73 B0.610.62C0.80.11.250.2 D1.70.30.93.1解析(1)y2xy2x2y|f(x)|.(2)A中,函数y1.7x是增函数,2.53,1.72.51.73.B中,y0.6x是减函数,10.62.C中,(0.8)11.25,问题转化为比较1.250.1与1.250.2的大小y1.25x是增函数,0.10.2,1.250.11.250.2,即0.80.11,0.93.10.93.1.答案(1)B(2)B规律方法 (1)对指数型函数的图象与性质(单调性、最值、
6、大小比较、零点等)的求解往往利用相应指数函数的图象,通过平移、对称变换得到其图象,然后数形结合使问题得解(2)一些指数方程、不等式问题的求解,往往利用相应指数型函数图象数形结合求解【训练2】 已知实数a,b满足等式2 011a2 012b,下列五个关系式:0ba;ab0;0ab;ba0;ab.其中不行能成立的关系式有()A1个 B2个 C3个 D4个解析设2 011a2 012bt,如图所示,由函数图象,可得(1)若t1,则有ab0;(2)若t1,则有ab0;(3)若0t1,则有ab0.故可能成立,而不行能成立答案B考点三指数函数的性质及其应用【例3】 已知函数f(x)x3.(1)求函数f(x
7、)的定义域;(2)争辩f(x)的奇偶性;(3)求证:f(x)0.审题路线由2x10可求f(x)的定义域分别求g(x)与h(x)x3的奇偶性可利用g(x)g(x)0推断g(x)的奇偶性利用“奇奇偶,奇偶奇”推断f(x)的奇偶性先证x0时,f(x)0再证x0时,f(x)0.解(1)由2x10可解得x0,定义域为x|x0(2)令g(x),h(x)x3.则h(x)为奇函数,g(x)g(x)10.g(x)为奇函数,故f(x)为偶函数(3)证明当x0时,2x10,x30,即f(x)0.又f(x)是偶函数,当x0时,f(x)f(x)0,f(x)在(,0)(0,)上恒大于零f(x)0.规律方法 (1)应用指数
8、函数的单调性可以比较同底数幂值的大小(2)与指数函数有关的指数型函数的定义域、值域(最值)、单调性、奇偶性的求解方法,与前面所讲一般函数的求解方法全都,只需依据条件机敏选择即可.同学用书第23页【训练3】 已知定义域为R的函数f(x)是奇函数(1)求a,b的值;(2)解关于t的不等式f(t22t)f(2t21)0.解(1)由于f(x)是定义在R上的奇函数,所以f(0)0,即0,解得b1,所以f(x).又由f(1)f(1)知.解得a2.(2)由(1)知f(x).由上式易知f(x)在(,)上为减函数(此外可用定义或导数法证明函数f(x)在R上是减函数)又由于f(x)是奇函数,所以不等式f(t22t
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 创新设计 创新 设计 2021 年高 数学 四川 专用 一轮 复习 考点 突破 指数 指数函数
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。