2021高中数学-1.7-相关性-学案1(北师大必修3).docx
《2021高中数学-1.7-相关性-学案1(北师大必修3).docx》由会员分享,可在线阅读,更多相关《2021高中数学-1.7-相关性-学案1(北师大必修3).docx(5页珍藏版)》请在咨信网上搜索。
1.8相关关系 教学目标: 学问与技能: 通过收集现实问题中两个变量的数据作出散点图,利用散点图直观生疏变量间的相关关系。 过程与方法: 经受用不同的估算方法来描述两个变量线性相关的过程,能依据得到的近似直线进行简洁的估量。 情感态度、价值观: 体会现实生活中大量存在着具有相关关系的两个量,感受统计与日常生活的亲热联系。 教学重点:用不同的估算方法描述两个变量的线性相关关系 教学难点:用不同的估算方法描述两个变量的线性相关关系 教学活动 一、创设情境,生疏相关关系 1.比较下面问题中两个变量之间的关系,说说它们的异同: (1)真空中的自由落体运动,落体下落的距离h和下落的时间t有着h=gt2的关系; (2)一辆行驶在大路上的汽车,每个时刻t都有一个确定的速度v,它们之间的关系。 (3)人的身高与体重之间的关系。 (4)人的年龄与血压之间的关系。 生独立思考后,开放全班沟通。 同学可能回答这几个问题中两个变量之间都存在着关系,但前两个之间存在着函数关系,后两个之间的关系是不确定的。 变量间相关关系的概念: 自变量取值确定时,因变量的取值带有确定随机性的两个变量之间的关系,叫做相关关系. 请同学们回忆一下,我们以前是否学过变量间的关系呢? 两个变量间的函数关系. 相关关系与函数关系的异同点: 相同点:两者均是指两个变量间的关系. 不同点:①函数关系是一种确定的关系;相关关系是一种 非确定的关系.事实上,函数关系是两个非随机变量的关 系,而相关关系是随机变量与随机变量间的关系. ②函数关系是一种因果关系,而相关关系不愿定是因果关 系,也可能是伴随关系. 2.如何刻画上述的这种关系呢? (1)为了了解人的身高与体重的关系,我们随机地抽取9名15岁的男生,测得身高、体重如下表: 编号 1 2 3 4 5 6 7 8 9 身高/cm 165 157 155 175 168 157 178 160 163 体重/kg 52 44 45 55 54 47 62 50 53 如何刻画两组数据之间的关系呢? 同学依据以前的阅历能够意识到可以通过画图来直观地体现两组数据的关系,并独立作出下图: (2)观看上图,你有什么发觉? 在独立思考的基础上,同学可能回答: 1.身高越高,体重整体上在增长。 2.同一身高157 cm对应着不同的体重44 kg,47 kg,体重不是身高的函数。 3.这些点看上去近似在一条直线上。随着身高的增长,体重基本上是直线增加的趋势。 散点图:在考虑两个量的关系时,为了对变量之间的关系有一个大致的了解,人们通常将变量所对应的点描出来,这些点就组成了变量之间的一个图,通常称这种图叫做变量之间的散点图。 借助上面的散点图,老师介绍线性相关、非线性相关、不相关关系。 正相关:从刚才的散点图发觉:身高越高,体重整体上在增长,点的位置散布在从左下角到右上角的区域。称它们成正相关。 负相关:但有的两个变量的相关,如下图所示: 如高原含氧量与海拔高度的相关关系,海平面以上,海拔高度越高,含氧量越少。作出散点图发觉,它们散布在从左上角到右下角的区域内。又如汽车的载重和汽车每消耗1升汽油所行使的平均路程,称它们成负相关. 即学即用 1.下列关系中,是带有随机性相关关系的是 . ①正方形的边长与面积的关系;②水稻产量与施肥量之间的关系;③人的身高与年龄之间的关系;④降雪量与交通事故发生之间的关系. 答案:②③④ 2. 下列两个变量之间的关系哪个不是函数关系( ) A.角度和它的余弦值 B. 正方形边长和面积 C.正n边形的边数和它的内角和 D. 人的年龄和身高 答案; D 典例分析: 利用散点图推断两个变量的相关性 例1: 某班5个同学的数学和物理成果如表: 同学 学科 A B C D E 数学 80 75 70 65 60 物理 70 66 68 64 62 画出散点图,并推断它们是否有相关关系? 例2:有一位同学家开了一个小卖部,他为了争辩气温对热饮销售的影响,经过统计,得到一个卖出热饮杯数与当天气温的对比表: 温度 (℃) -5 0 4 7 12 15 19 23 27 31 36 热饮 杯数 156 150 132 128 130 116 104 89 93 76 54 (1)画出散点图; (2)你能从散点图中发觉气温与热饮销售杯数之间关系的一般规律吗? 解题导引 推断变量间是否线性相关,一种常用的简便可行的方法就是作散点图. 散点图是由大量数据点分布构成的,是定义在具有相关关系的两个变量基础之上的,对于性质不明确的两组数据可先作散点图,直观地分析它们有无关系及关系的亲热程度. 二、回归直线 假如散点图中点的分布从整体上看大致在一条直线四周,我们就称这两个变量之间具有线性相关关系,这条直线就叫做回归直线。 这条回归直线的方程,简称为回归方程。 1.假如全部的样本点都落在某一函数曲线上,变量之间具有函数关系 2.假如全部的样本点都落在某一函数曲线四周,变量之间就有相关关系 3.假如全部的样本点都落在某始终线四周,变量之间就有线性相关关系 只有散点图中的点呈条状集中在某始终线四周的时候,才可以说两个变量之间具有线性关系,才有两个变量的正线性相关和负线性相关的概念,才可以用回归直线来描述两个变量之间的关系 如何具体的求出这个回归方程呢? 方案一:接受测量的方法:先画一条直线,测量出各点到它的距离,然后移动直线,到达一个使距离之和最小的位置,测量出此时直线的斜率和截距,就得到回归方程。 整体上最接近 方案二: 在图中选取两点画直线,使得直线两侧的点的个数基本相同。 方案三: 在散点图中多取几组点,确定几条直线的方程,分别求出各条直线的斜率和截距的平均数,将这两个平均数作为回归方程的斜率和截距。 上述三种方案均有确定的道理,但牢靠性不强,我们回到回归直线的定义。 假如散点图中点的分布从整体上看大致在一条直线四周,我们就称这两个变量之间具有线性相关关系,这条直线就叫做回归直线。 求回归方程的关键是如何用数学的方法来刻画“从整体上看,各点与直线的偏差最小”。 自测自评 1 . 下列两个变量之间的关系哪个不是函数关系( ) A.角度和它的余弦值 B.正方形边长和面积 C.正n边形的边数和它的内角和 D.人的年龄和身高 2.对变量x,y有观测数据(xi,yi)(i=1,2,…,10),得散点图(1);对变量u,v有观测数据(ui,vi)(i=1,2,…,10),得散点图(2).由 这两个散点图可以推断( ) A.变量x与y正相关,u与v正相关 B.变量x与y正相关,u与v负相关 C.变量x与y负相关,u与v正相关 D.变量x与y负相关,u与v负相关 3.下列两个变量之间的关系不具有线性关系的是 ( ) A.小麦产量与施肥值 B.球的体积与表面积 C.蛋鸭产蛋个数与饲养天数 D.甘蔗的含糖量与生长期的日照天数 4.下列变量之间是函数关系的是 ( ) A. 当速度确定时,路程和时间 B.光照时间和果树亩产量 C.降雪量和交通事故发生率 D.每亩施用肥料量和粮食亩产量 5.下面现象间的关系属于线性相关关系的是 ( ) A.圆的周长和它的半径之间的关系 B.价格不变条件下,商品销售额与销售量之间的关系 C.家庭收入愈多,其消费支出也有增长的趋势 D.正方形面积和它的边长之间的关系 6.下列关系中是函数关系的是 ( ) A.球的半径长度和体积的关系 B.农作物收获和施肥量的关系 C.商品销售额和利润的关系 D.产品产量与单位成品成本的关系 课堂小结 1.变量间相关关系的概念 2.散点图 正相关 负相关 3.回归直线 1.8相关关系答案 例1:解 以x轴表示数学成果,y轴表示物理成果,可得相应的散点图如下图所示: 由散点图可见,两者之间具有相关关系. 例2:解 (1)以x轴表示温度,以y轴表示热饮杯数,可作散点图,如图所示. (2)从图中可以看出,各点散布在从左上角到右下角的区域里,因此,气温与热饮销售杯数之间是负相关关系,即气温越高,卖出去的热饮杯数越少. 从散点图可以看出,这些点大致分布在一条直线四周. 自测自评 1.答案: D 2. 答案: C 3.答案:B 4.答案:A 5.答案:C 6.答案:A- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 高中数学 1.7 相关性 北师大 必修
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文