高中数学(北师大版)选修1-1教案:第3章-导数在实际问题中的应用-参考教案1.docx
《高中数学(北师大版)选修1-1教案:第3章-导数在实际问题中的应用-参考教案1.docx》由会员分享,可在线阅读,更多相关《高中数学(北师大版)选修1-1教案:第3章-导数在实际问题中的应用-参考教案1.docx(3页珍藏版)》请在咨信网上搜索。
4.2 导数在实际问题中的应用 教学目的: 1. 进一步娴熟函数的最大值与最小值的求法; ⒉初步会解有关函数最大值、最小值的实际问题 教学重点:解有关函数最大值、最小值的实际问题. 教学难点:解有关函数最大值、最小值的实际问题. 授课类型:新授课 课时支配:1课时 教 具:多媒体、实物投影仪 教学过程: 一、复习引入: 1.极大值: 一般地,设函数f(x)在点x0四周有定义,假如对x0四周的全部的点,都有f(x)<f(x0),就说f(x0)是函数f(x)的一个极大值,记作y极大值=f(x0),x0是极大值点 2.微小值:一般地,设函数f(x)在x0四周有定义,假如对x0四周的全部的点,都有f(x)>f(x0).就说f(x0)是函数f(x)的一个微小值,记作y微小值=f(x0),x0是微小值点 3.极大值与微小值统称为极值 4. 判别f(x0)是极大、微小值的方法: 若满足,且在的两侧的导数异号,则是的极值点,是极值,并且假如在两侧满足“左正右负”,则是的极大值点,是极大值;假如在两侧满足“左负右正”,则是的微小值点,是微小值 5. 求可导函数f(x)的极值的步骤: (1)确定函数的定义区间,求导数f′(x) (2)求方程f′(x)=0的根 (3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格.检查f′(x)在方程根左右的值的符号,假如左正右负,那么f(x)在这个根处取得极大值;假如左负右正,那么f(x)在这个根处取得微小值;假如左右不转变符号即都为正或都为负,那么f(x)在这个根处无极值 6.函数的最大值和最小值:在闭区间上连续的函数在上必有最大值与最小值.⑴在开区间内连续的函数不愿定有最大值与最小值. ⑵函数的最值是比较整个定义域内的函数值得出的;函数的极值是比较极值点四周函数值得出的.⑶函数在闭区间上连续,是在闭区间上有最大值与最小值的充分条件而非必要条件.(4)函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个 7.利用导数求函数的最值步骤:⑴求在内的极值;⑵将的各极值与、比较得出函数在上的最值 二、讲解范例: 例1在边长为60 cm的正方形铁片的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底的边长是多少时,箱底的容积最大?最大容积是多少? _ x _ x _ 60 _ 60 x x 解法一:设箱底边长为xcm,则箱高cm,得箱子容积 . 令 =0,解得 x=0(舍去),x=40, 并求得 V(40)=16 000 由题意可知,当x过小(接近0)或过大(接近60)时,箱子容积很小,因此,16 000是最大值 答:当x=40cm时,箱子容积最大,最大容积是16 000cm3 解法二:设箱高为xcm,则箱底长为(60-2x)cm,则得箱子容积 .(后面同解法一,略) 由题意可知,当x过小或过大时箱子容积很小,所以最大值毁灭在极值点处. 事实上,可导函数、在各自的定义域中都只有一个极值点,从图象角度理解即只有一个波峰,是单峰的,因而这个极值点就是最值点,不必考虑端点的函数值 例2圆柱形金属饮料罐的容积确定时,它的高与底与半径应怎样选取,才能使所用的材料最省? 解:设圆柱的高为h,底半径为R,则表面积 S=2πRh+2πR2 由V=πR2h,得,则 S(R)= 2πR+ 2πR2=+2πR2 令 +4πR=0 解得,R=,从而h====2 即 h=2R 由于S(R)只有一个极值,所以它是最小值 答:当罐的高与底直径相等时,所用材料最省 变式:当圆柱形金属饮料罐的表面积为定值S时,它的高与底面半径应怎样选取,才能使所用材料最省? 提示:S=2+h= V(R)=R= )=0 . 例3在经济学中,生产x单位产品的成本称为成本函数同,记为C(x),出售x单位产品的收益称为收益函数,记为R(x),R(x)-C(x)称为利润函数,记为P(x)。 (1)、假如C(x)=,那么生产多少单位产品时,边际最低?(边际成本:生产规模增加一个单位时成本的增加量) (2)、假如C(x)=50x+10000,产品的单价P=100-0.01x,那么怎样定价,可使利润最大? 变式:已知某商品生产成本C与产量q的函数关系式为C=100+4q,价格p与产量q的函数关系式为.求产量q为何值时,利润L最大? 分析:利润L等于收入R减去成本C,而收入R等于产量乘价格.由此可得出利润L与产量q的函数关系式,再用导数求最大利润. 解:收入, 利润 令,即,求得唯一的极值点 答:产量为84时,利润L最大 三、课堂练习: 1.函数y=2x3-3x2-12x+5在[0,3]上的最小值是___________. 2.函数f(x)=sin2x-x在[-,]上的最大值为_____;最小值为_______. 3.将正数a分成两部分,使其立方和为最小,这两部分应分成______和___. 4.使内接椭圆=1的矩形面积最大,矩形的长为_____,宽为_____. 5.在半径为R的圆内,作内接等腰三角形,当底边上高为___时,它的面积最大 答案:1. -15 2. - 3. 4.a b 5.R 四、小结 : ⑴解有关函数最大值、最小值的实际问题,需要分析问题中各个变量之间的关系,找出适当的函数关系式,并确定函数的定义区间;所得结果要符合问题的实际意义. ⑵依据问题的实际意义来推断函数最值时,假如函数在此区间上只有一个极值点,那么这个极值就是所求最值,不必再与端点值比较. ⑶相当多有关最值的实际问题用导数方法解决较简洁 五、课后作业: 1.有一边长分别为8与5的长方形,在各角剪去相同的小正方形,把四边折起作成一个无盖小盒,要使纸盒的容积最大,问剪去的小正方形的边长应为多少? 解:(1)正方形边长为x,则V=(8-2x)·(5-2x)x=2(2x3-13x2+20x)(0<x<) V′=4(3x2-13x+10)(0<x<),V′=0得x=1 依据实际状况,小盒容积最大是存在的, ∴当x=1时,容积V取最大值为18. 2.一条水渠,断面为等腰梯形,如图所示,在确定断面尺寸时,期望在断面ABCD的面积为定值S时,使得湿周l=AB+BC+CD最小,这样可使水流阻力小,渗透少,求此时的高h和下底边长b. 解:由梯形面积公式,得S= (AD+BC)h,其中AD=2DE+BC,DE=h,BC=b ∴AD=h+b, ∴S= ① ∵CD=,AB=CD.∴l=×2+b ② 由①得b=h,代入②,∴l= l′==0,∴h=, 当h<时,l′<0,h>时,l′>0. ∴h=时,l取最小值,此时b=- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 优教通-同步备课 优教通 同步 备课 高中数学 北师大 选修 教案 导数 实际问题 中的 应用 参考
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文