【2022决胜高考】人教A版(文)数学一轮复习导练测:章末检测第二章-集合与常用逻辑用语.docx
《【2022决胜高考】人教A版(文)数学一轮复习导练测:章末检测第二章-集合与常用逻辑用语.docx》由会员分享,可在线阅读,更多相关《【2022决胜高考】人教A版(文)数学一轮复习导练测:章末检测第二章-集合与常用逻辑用语.docx(4页珍藏版)》请在咨信网上搜索。
其次章 章末检测 (时间:120分钟 满分:150分) 一、选择题(本大题共12小题,每小题5分,共60分) 1.(2010·宁德四县市一中联考)已知集合A={x|y=lg(2x-x2)},B={y|y=2x,x>0},R是实数集,则(∁RB)∩A等于 ( ) A.[0,1] B.(0,1] C.(-∞,0] D.以上都不对 2.下列四个函数中,与y=x表示同一函数的是 ( ) A.y=()2 B.y= C.y= D.y= 3.设a=log3π,b=log2,c=log3,则 ( ) A.a>b>c B.a>c>b C.b>a>c D.b>c>a 4.(2010·吉安高三联考)由方程x|x|+y|y|=1确定的函数y=f(x)在(-∞,+∞)上是 ( ) A.增函数 B.减函数 C.先增后减 D.先减后增 5.函数f(x)=|x|-k有两个零点,则 ( ) A.k=0 B.k>0 C.0≤k<1 D.k<0 6.若0<x<y<1,则 ( ) A.3y<3x B.logx3<logy3 C.log4x<log4y D.()x<()y 7.(2011·新乡月考)函数y=的图象大致是 ( ) 8.(2010·天津)若函数f(x)=若f(a)>f(-a),则实数a的取值范围( ) A.(-1,0)∪(0,1) B.(-∞,-1)∪(1,+∞) C.(-1,0)∪(1,+∞) D.(-∞,-1)∪(0,1) 9.(2011·张家口模拟)已知幂函数f(x)的图象经过点(,),P(x1,y1),Q(x2,y2)(x1<x2)是函数图象上的任意不同两点,给出以下结论: ①x1f(x1)>x2f(x2); ②x1f(x1)<x2f(x2); ③>; ④<. 其中正确结论的序号是 ( ) A.①② B.①③ C.②④ D.②③ 10.(2010·山西阳泉、大同、晋中5月联考)已知函数f(x)=的值域为[0,+∞),则它的定义域可以是 ( ) A.(0,1] B.(0,1) C.(-∞,1] D.(-∞,0] 11.已知定义在R上的奇函数f(x),满足f(x-4)=-f(x),且在区间[0,2]上是增函数,( ) A.f(-25)<f(11)<f(80) B.f(80)<f(11)<f(-25) C.f(11)<f(80)<f(-25) D.f(-25)<f(80)<f(11) 12.已知a>0且a≠1,f(x)=x2-ax,当x∈(-1,1)时,均有f(x)<,则实数a的取值范围是 ( ) A.(0,]∪[2,+∞) B.[,1)∪(1,4] C.[,1)∪(1,2] D.(0,]∪[4,+∞) 题 号 1 2 3 4 5 6 7 8 9 10 11 12 答 案 二、填空题(本大题共4小题,每小题5分,共20分) 13.已知对不同的a值,函数f(x)=2+ax-1(a>0,且a≠1)的图象恒过定点P,则P点的坐标是________. 14.(2011·南京模拟)定义在R上的函数f(x)满足f(x)=,则 f(2 011)的值为__________. 15.定义:区间[x1,x2](x1<x2)的长度为x2-x1.已知函数y=|log0.5x|的定义域为[a,b],值域为[0,2],则区间[a,b]的长度的最大值为________. 16.(2011·潍坊模拟)设函数f(x)是定义在R上的偶函数,且对任意的x∈R恒有f(x+1)=f(x-1),已知当x∈[0,1]时f(x)=()1-x,则 ①2是函数f(x)的周期; ②函数f(x)在(1,2)上是减函数,在(2,3)上是增函数; ③函数f(x)的最大值是1,最小值是0; ④当x∈(3,4)时,f(x)=()x-3. 其中全部正确命题的序号是________. 三、解答题(本大题共6小题,共70分) 17.(10分)(2011·合肥模拟)对定义在实数集上的函数f(x),若存在实数x0,使得f(x0)=x0,那么称x0为函数f(x)的一个不动点. (1)已知函数f(x)=ax2+bx-b(a≠0)有不动点(1,1)、(-3,-3),求a、b; (2)若对于任意实数b,函数f(x)=ax2+bx-b (a≠0)总有两个相异的不动点,求实数a的取值范围. 18.(12分)已知f(x)为定义在[-1,1]上的奇函数,当x∈[-1,0]时,函数解析式f(x)=-(a∈R). (1)写出f(x)在[0,1]上的解析式; (2)求f(x)在[0,1]上的最大值. 19.(12分)已知函数f(x)=2x-. (1)若f(x)=2,求x的值; (2)若2tf(2t)+mf(t)≥0对于t∈[1,2]恒成立,求实数m的取值范围. 20.(12分)(2011·银川模拟)已知函数f(x)的图象与函数h(x)=x++2的图象关于点A(0,1)对称. (1)求函数f(x)的解析式; (2)若g(x)=f(x)+,g(x)在区间(0,2]上的值不小于6,求实数a的取值范围. 21.(12分)经市场调查,某城市的一种小商品在过去的近20天内的销售量(件)与价格(元)均为时间t(天)的函数,且销售量近似满足g(t)=80-2t(件),价格近似满足f(t)=20-|t-10|(元). (1)试写出该种商品的日销售额y与时间t(0≤t≤20)的函数表达式; (2)求该种商品的日销售额y的最大值与最小值. 22.(12分)(2011·合肥模拟)对于定义域为[0,1]的函数f(x),假犹如时满足以下三条:①对任意的x∈[0,1],总有f(x)≥0;②f(1)=1;③若x1≥0,x2≥0,x1+x2≤1,都有f(x1+x2)≥f(x1)+f(x2)成立,则称函数f(x)为抱负函数. (1)若函数f(x)为抱负函数,求f(0)的值; (2)推断函数f(x)=2x-1 (x∈[0,1])是否为抱负函数,并予以证明; (3)若函数f(x)为抱负函数,假定存在x0∈[0,1],使得f(x0)∈[0,1],且f[f(x0)]=x0,求证:f(x0)=x0. 答案 1.B [由2x-x2>0, 得x(x-2)<0⇒0<x<2, 故A={x|0<x<2},由x>0,得2x>1, 故B={y|y>1},∁RB={y|y≤1}, 则(∁RB)∩A={x|0<x≤1}.] 2.B 3.A [∵log3<log2<log2,∴b>c. 又∵log2<log22=log33<log3π, ∴a>b,∴a>b>c.] 4.B [ ①当x≥0且y≥0时, x2+y2=1, ②当x>0且y<0时,x2-y2=1, ③当x<0且y>0时,y2-x2=1, ④当x<0且y<0时,无意义. 由以上争辩作图如右,易知是减函数.] 5.B [令y=|x|,y=k,由题意即要求两函数图象有两交点,利用数形结合思想,作出两函数图象,得k>0.] 6.C [∵0<x<y<1,∴由函数的单调性得3x<3y,logx3>logy3,()x>()y,即选项A、B、D错,故选C.] 7.D 8.C [由分段函数的表达式知,需要对a的正负进行分类争辩. f(a)>f(-a)⇒或 ⇒或 ⇒a>1或-1<a<0.] 9.D [依题意,设f(x)=xα,则有()α=,即()α=(),所以α=,于是f(x)=x. 由于函数f(x)=x在定义域[0,+∞)内单调递增,所以当x1<x2时,必有f(x1)<f(x2),从而有x1f(x1)<x2f(x2),故②正确;又由于,分别表示直线OP、OQ的斜率,结合函数图象,简洁得出直线OP的斜率大于直线OQ的斜率,故>,所以③正确.] 10.A [∵f(x)的值域为[0,+∞), 令t=4x-2x+1+1, ∴t∈(0,1]恰成立,即0<(2x)2-2·2x+1≤1恰成立,0<(2x-1)2成立,则x≠0,(2x)2-2·2x+1≤1可化为2x(2x-2)≤0, ∴0≤2x≤2,即0≤x≤1, 综上可知0<x≤1.] 11.D [由于f(x)满足f(x-4)=-f(x),所以f(x-8)=f(x),所以函数是以8为周期的周期函数,则f(-25)=f(-1),f(80)=f(0),f(11)=f(3),又由于f(x)在R上是奇函数,f(0)=0得f(80)=f(0)=0,f(-25)=f(-1)=-f(1),而由f(x-4)=-f(x)得f(11)=f(3)=-f(-3)=-f(1-4)=f(1),又由于f(x)在区间[0,2]上是增函数,所以f(1)>f(0)=0,-f(1)<0,即f(-25)<f(80)<f(11).] 12.C [将f(x)<化为x2-<ax,利用数形结合,分a>1和0<a<1两种状况求解. 结合图象得或, 解得1<a≤2或≤a<1.] 13.(1,3) 14.-1 解析 由已知得f(-1)=log22=1, f(0)=0,f(1)=f(0)-f(-1)=-1, f(2)=f(1)-f(0)=-1, f(3)=f(2)-f(1)=-1-(-1)=0, f(4)=f(3)-f(2)=0-(-1)=1, f(5)=f(4)-f(3)=1,f(6)=f(5)-f(4)=0, 所以函数f(x)的值以6为周期重复性毁灭, 所以f(2 011)=f(1)=-1. 15. 解析 由0≤|log0.5x|≤2解得≤x≤4, ∴[a,b]长度的最大值为4-=. 16.①②④ 解析 由f(x+1)=f(x-1)可得f(x+2)=f[(x+1)+1]=f(x+1-1)=f(x), ∴2是函数f(x)的一个周期. 又函数f(x)是定义在R上的偶函数, 且x∈[0,1]时, f(x)=()1-x, ∴函数f(x)的简图如右图,由简图可知②④也正确. 17.解 (1)∵f(x)的不动点为(1,1)、(-3,-3), ∴有∴a=1,b=3.………………………………………………(4分) (2)∵函数总有两个相异的不动点, ∴ax2+(b-1)x-b=0,Δ>0, 即(b-1)2+4ab>0对b∈R恒成立,……………………………………………………(7分) Δ1<0,即(4a-2)2-4<0,………………………………………………………………(9分) ∴0<a<1.…………………………………………………………… …………………(10分) 18.解 (1)∵f(x)为定义在[-1,1]上的奇函数,且f(x)在x=0处有意义, ∴f(0)=0,即f(0)=-=1-a=0. ∴a=1.……………………………………………………………………………………(3分) 设x∈[0,1],则-x∈[-1,0]. ∴f(-x)=-=4x-2x. 又∵f(-x)=-f(x) ∴-f(x)=4x-2x. ∴f(x)=2x-4x.……………………………………………………………………………(8分) (2)当x∈[0,1],f(x)=2x-4x=2x-(2x)2, ∴设t=2x(t>0),则f(t)=t-t2. ∵x∈[0,1],∴t∈[1,2]. 当t=1时,取最大值,最大值为1-1=0.……………………………………………(12分) 19.解 (1)当x<0时,f(x)=0; 当x≥0时,f(x)=2x-.…………………………………………………………………(3分) 由条件可知2x-=2,即22x-2·2x-1=0, 解得2x=1±. ∵2x>0,∴x=log2(1+).……………………………………………………………(6分) (2)当t∈[1,2]时,2t+m≥0, 即m(22t-1)≥-(24t-1). ∵22t-1>0,∴m≥-(22t+1).…………………………………………………………(9分) ∵t∈[1,2],∴-(1+22t)∈[-17,-5], 故m的取值范围是[-5,+∞).……………………………………………………(12分) 20.解 (1)设f(x)图象上任一点坐标为(x,y),点(x,y)关于点A(0,1)的对称点(-x,2-y)在h(x)的图象上,……………………………………………………………………………(2分) ∴2-y=-x++2,∴y=x+, 即f(x)=x+.……………………………………………………………………………(6分) (2)由题意g(x)=x+, 且g(x)=x+≥6,x∈(0,2]. ∵x∈(0,2],∴a+1≥x(6-x),…………………………………………………………(8分) 即a≥-x2+6x-1. 令q(x)=-x2+6x-1,x∈(0,2], q(x)=-x2+6x-1=-(x-3)2+8, ∴x∈(0,2]时,q(x)max=q(2)=7,∴a≥7.……………………………………………(12分) 21.解 (1)y=g(t)·f(t)=(80-2t)·(20-|t-10|)=(40-t)(40-|t-10|) =……………………………………………………(4分) (2)当0≤t<10时,y的取值范围是[1 200,1 225], 在t=5时,y取得最大值为1 225;……………………………………………………(8分) 当10≤t≤20时,y的取值范围是[600,1 200], 在t=20时,y取得最小值为600. 所以第5天,日销售额y取得最大值为1 225元; 第20天,日销售额y取得最小值为600元.………………………………………(12分) 22.(1)解 取x1=x2=0, 可得f(0)≥f(0)+f(0)⇒f(0)≤0. 又由条件①得f(0)≥0,故f(0)=0.………………………………………………………(4分) (2)解 明显f(x)=2x-1在[0,1]满足条件①f(x)≥0; 也满足条件②f(1)=1. 若x1≥0,x2≥0,x1+x2≤1, 则f(x1+x2)-[f(x1)+f(x2)]=2x1+x2-1-[(2x1-1)+(2x2-1)]=2x1+x2-2x1-2x2+1=(2x2-1)(2x1-1)≥0,即满足条件③,故f(x)是抱负函数.………………………………(8分) (3)证明 由条件③知,任给m、n∈[0,1], 当m<n时,n-m∈[0,1], ∴f(n)=f(n-m+m)≥f(n-m)+f(m)≥f(m). 若x0<f(x0),则f(x0)≤f[f(x0)]=x0,前后冲突. 若x0>f(x0),则f(x0)≥f[f(x0)]=x0,前后冲突. 故f(x0)=x0.……………………………………………………………………………(12分)- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022决胜高考 2022 决胜 高考 人教 数学 一轮 复习 导练测 检测 第二 集合 常用 逻辑 用语
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文
本文标题:【2022决胜高考】人教A版(文)数学一轮复习导练测:章末检测第二章-集合与常用逻辑用语.docx
链接地址:https://www.zixin.com.cn/doc/3827380.html
链接地址:https://www.zixin.com.cn/doc/3827380.html