2021高考数学(广东专用-理)一轮题库:第10章-第1讲--分类加法计数原理与分步乘法计数原理.docx
《2021高考数学(广东专用-理)一轮题库:第10章-第1讲--分类加法计数原理与分步乘法计数原理.docx》由会员分享,可在线阅读,更多相关《2021高考数学(广东专用-理)一轮题库:第10章-第1讲--分类加法计数原理与分步乘法计数原理.docx(3页珍藏版)》请在咨信网上搜索。
第十章 计数原理 第1讲 分类加法计数原理与分步乘法计数原理 一、选择题 1.如图,用4种不同的颜色涂入图中的矩形A,B,C,D中,要求相邻的矩形涂色不同,则不同的涂法有( ) A B C D A.72种 B.48种 C.24种 D.12种 解析 先分两类:一是四种颜色都用,这时A有4种涂法,B有3种涂法,C有2种涂法, D有1种涂法,共有4×3×2×1=24种涂法;二是用三种颜色,这时A,B,C的涂法有4×3×2=24种,D只要不与C同色即可,故D有2种涂法.故不同的涂法共有24+24×2=72种. 答案 A 2.如图,用6种不同的颜色把 图中A、B、C、D四块区域分开,若相邻区域 不能涂同一种颜色,则不同的涂法共有( ). A.400种 B.460种 C.480种 D.496种 解析 从A开头,有6种方法,B有5种,C有4种,D、A同色1种,D、A不同色3种,∴不同涂法有6×5×4×(1+3)=480(种),故选C. 答案 C 3.某省高中学校自实施素养训练以来,同学社团得到迅猛进展,某校高一新生中的五名同学打算参与“春晖文学社”、“舞者轮滑俱乐部”、“篮球之家”、“围棋苑”四个社团.若每个社团至少有一名同学参与,每名同学至少参与一个社团且只能参与一个社团.且同学甲不参与“围棋苑”,则不同的参与方法的种数为 ( ). A.72 B.108 C.180 D.216 解析 设五名同学分别为甲、乙、丙、丁、戊,由题意,假如甲不参与“围棋苑”,有下列两种状况: (1)从乙、丙、丁、戊中选一人(如乙)参与“围棋苑”,有C种方法,然后从甲与丙、丁、戊共4人中选2人(如丙、丁)并成一组与甲、戊支配到其他三个社团中,有CA种方法, 故共有CCA种参与方法; (2)从乙、丙、丁、戊中选2人(如乙、丙)参与“围棋苑”,有C种方法,甲与丁、戊支配到其他三个社团中有A种方法,这时共有CA种参与方法; 综合(1)(2),共有CCA+CA=180种参与方法. 答案 C 4.有4位老师在同一班级的4个班中各教一个班的数学,在数学检测时要求每位老师不能在本班监考,则监考的方法有( ) A.8种 B.9种 C.10种 D.11种 解析 分四步完成,共有3×3×1×1=9种. 答案 B 5.从6人中选4人分别到巴黎、伦敦、悉尼、莫斯科四个城市巡游,要求每个城市有一人巡游,每人只巡游一个城市,且这6人中甲、乙两人不去巴黎巡游,则不同的选择方案共有 ( ). A.300种 B.240种 C.144种 D.96种 解析 甲、乙两人不去巴黎巡游状况较多,接受排解法,符合条件的选择方案有CA-CA=240. 答案 B 6.4位同学从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法有( ). A.12种 B.24种 C.30种 D.36种 解析 分三步,第一步先从4位同学中选2人选修课程甲.共有C种不同选法,其次步给第3位同学选课程,有2种选法.第三步给第4位同学选课程,也有2种不同选法.故共有C×2×2=24(种). 答案 B 二、填空题 7.将数字1,2,3,4,5,6按第一行1个数,其次行2个数,第三行3个数的形式随机排列,设Ni(i=1,2,3)表示第i行中最大的数,则满足N1<N2<N3的全部排列的个数是________.(用数字作答) 解析 由已知数字6确定在第三行,第三行的排法种数为AA=60;剩余的三个数字中最大的确定排在其次行,其次 行的排法种数为AA=4,由分步计数原理满足条件的排列个数是240. 答案 240 8.数字1,2,3,…,9这九个数字填写在如图的9个空格中,要求每一行从左到右依次增大,每列从上到下也依次增大,当数字4固定在中心位置时,则全部填写空格的方法共有________种. 解析 必有1、4、9在主对角线上,2、3只有两种不同的填法,对于它们的每一种填法,5只有两种填法.对于5的每一种填法,6、7、8只有3种不同的填法,由分步计数原理知共有22×3=12种填法. 答案 12 9.假如把个位数是1,且恰有3个数字相同的四位数叫做“好数”,那么在由1,2,3,4四个数字组成的有重复数字的四位数中,“好数”共有________个. 解析 当相同的数字不是1时,有C个;当相同的数字是1时,共有CC个,由分类加法计数原理得共有“好数”C+CC=12个. 答案 12 10.给n个自上而下相连的正方形着黑色或白色.当n≤4时,在全部不同的着色方案中,黑色正方形互不相邻的着色方案如下图所示: 由此推断,当n=6时,黑色正方形互不相邻的着色方案共有__________种,至少有两个黑色正方形相邻的着色方案共有________种.(结果用数值表示) 答案 21;43 三、解答题 11.如图所示三组平行线分别有m、n、k条,在此图形中 (1)共有多少个三角形? (2)共有多少个平行四边形? 解 (1)每个三角形与从三组平行线中各取一条的取法是一一对应的,由分步计数原理知共可构成m·n·k个三角形. (2)每个平行四边形与从两组平行线中各取两条的取法是一一对应的,由分类和分步计数原理知共可构成CC+CC+CC个平行四边形. 12.设集合M={-3,-2,-1,0,1,2},P(a,b)是坐标平面上的点,a,b∈M. (1)P可以表示多少个平面上的不同的点? (2)P可以表示多少个其次象限内的点? (3)P可以表示多少个不在直线y=x上的点? 解 (1)分两步,第一步确定横坐标有6种,其次步确定纵坐标有6种,经检验36个点均不相同,由分步乘法计数原理得N=6×6=36(个). (2)分两步,第一步确定横坐标有3种,其次步确定纵坐标有2种,依据分步乘法计数原理得N=3×2=6个. (3)分两步,第一步确定横坐标有6种,其次步确定纵坐标有5种,依据分步乘法计数原理得N=6×5=30个. 13.现支配一份5天的工作值班表,每天有一个人值班,共有5个人,每个人都可以值多天班或不值班,但相邻两天不准由同一个人值班,问此值班表共有多少种不同的排法? 解 可将星期一、二、三、四、五分给5个人,相邻的数字不分给同一个人. 星期一:可分给5人中的任何一人,有5种分法; 星期二:可分给剩余4人中的任何一人,有4种分法;星期三:可分给除去分到星期二的剩余4人中的任何一人,有4种分法; 同理星期四和星期五都有4种不同的分法,由分步计数原理共有5×4×4×4×4=1 280种不同的排法. 14.已知集合A={a1,a2,a3,a4},B={0,1,2,3},f是从A到B的映射. (1)若B中每一元素都有原象,这样不同的f有多少个? (2)若B中的元素0必无原象,这样的f有多少个? (3)若f满足f(a1)+f(a2)+f(a3)+f(a4)=4,这样的f又有多少个? 解 (1)明显对应是一一对应的,即为a1找象有4种方法,a2找象有3种方法,a3找象有2种方法,a4找象有1种方法,所以不同的f共有4×3×2×1=24(个). (2)0必无原象,1,2,3有无原象不限,所以为A中每一元素找象时都有3种方法.所以不同的f共有34=81(个). (3)分为如下四类: 第一类,A中每一元素都与1对应,有1种方法; 其次类,A中有两个元素对应1,一个元素对应2,另一个元素与0对应,有C·C=12种方法; 第三类,A中有两个元素对应2,另两个元素对应0,有C·C=6种方法; 第四类,A中有一个元素对应1,一个元素对应3,另两个元素与0对应,有C·C=12种方法. 所以不同的f共有1+12+6+12=31(个).- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 高考 数学 广东 专用 一轮 题库 10 分类 加法 计数 原理 分步 乘法
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文
本文标题:2021高考数学(广东专用-理)一轮题库:第10章-第1讲--分类加法计数原理与分步乘法计数原理.docx
链接地址:https://www.zixin.com.cn/doc/3827176.html
链接地址:https://www.zixin.com.cn/doc/3827176.html