2021高考数学(福建-理)一轮学案26-平面向量的基本定理及坐标表示.docx
《2021高考数学(福建-理)一轮学案26-平面向量的基本定理及坐标表示.docx》由会员分享,可在线阅读,更多相关《2021高考数学(福建-理)一轮学案26-平面向量的基本定理及坐标表示.docx(5页珍藏版)》请在咨信网上搜索。
学案26 平面对量的基本定理及坐标表示 导学目标: 1.了解平面对量的基本定理及其意义.2.把握平面对量的正交分解及其坐标表示.3.会用坐标表示平面对量的加法、减法与数乘运算.4.理解用坐标表示的平面对量共线的条件. 自主梳理 1.平面对量基本定理 定理:假如e1,e2是同一平面内的两个________向量,那么对于这一平面内的任意向量a,__________一对实数λ1,λ2,使a=______________. 我们把不共线的向量e1,e2叫做表示这一平面内全部向量的一组________. 2.夹角 (1)已知两个非零向量a和b,作=a,=b,则∠AOB=θ叫做向量a与b的________. (2)向量夹角θ的范围是________,a与b同向时,夹角θ=____;a与b反向时,夹角θ=____. (3)假如向量a与b的夹角是________,我们说a与b垂直,记作________. 3.把一个向量分解为两个____________的向量,叫做把向量正交分解. 4.在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i,j作为基底,对于平面内的一个向量a,有且只有一对实数x,y使a=xi+yj,我们把有序数对______叫做向量a的________,记作a=________,其中x叫a在________上的坐标,y叫a在________上的坐标. 5.平面对量的坐标运算 (1)已知向量a=(x1,y1),b=(x2,y2)和实数λ,那么a+b=________________________,a-b=________________________,λa=________________. (2)已知A(),B(),则=-=(x2,y2)-(x1,y1)=(x2-x1,y2-y1),即一个向量的坐标等于表示此向量的有向线段的__________的坐标减去__________的坐标. 6.若a=(x1,y1),b=(x2,y2) (b≠0),则a∥b的充要条件是________________________. 7.(1)P1(x1,y1),P2(x2,y2),则P1P2的中点P的坐标为________________________________. (2)P1(x1,y1),P2(x2,y2),P3(x3,y3),则△P1P2P3的重心P的坐标为_______________. 自我检测 1.(2010·福建)若向量a=(x,3)(x∈R),则“x=4”是“|a|=5”的 ( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分又不必要条件 2.设a=,b=,且a∥b,则锐角α为 ( ) A.30° B.45° C.60° D.75° 3.(2011·马鞍山模拟)已知向量a=(6,-4),b(0,2),=c=a+λb,若C点在函数y=sin x的图象上,则实数λ等于 ( ) A. B. C.- D.- 4.(2010·陕西)已知向量a=(2,-1),b=(-1,m),c=(-1,2),若(a+b)∥c,则m=________. 5.(2009·安徽)给定两个长度为1的平面对量和,它们的夹角为120°.如图所示,点C在以O为圆心的圆弧上变动,若=x+y,其中x,y∈R,则x+y的最大值是______. 探究点一 平面对量基本定理的应用 例1 如图所示,在△OAB中,=,=,AD与BC交于点M,设=a,=b,以a、b为基底表示. 变式迁移1 (2011·厦门模拟)如图,平面内有三个向量、、,其中与的夹角为120°,与的夹角为30°,且||=||=1,||=2,若=λ+μ(λ、μ∈R),则λ+μ的值为________. 探究点二 平面对量的坐标运算 例2 已知A(-2,4),B(3,-1),C(-3,-4),且=3,=2,试求点M,N和的坐标. 变式迁移2 已知点A(1,-2),若向量|与a=(2,3)同向,||=2,则点B的坐标为________. 探究点三 在向量平行下求参数问题 例3 (2011·嘉兴模拟)已知平面内三个向量:a=(3,2),b=(-1,2),c=(4,1). (1)求满足a=mb+nc的实数m、n; (2)若(a+kc)∥(2b-a),求实数k. 变式迁移3 (2009·江西)已知向量a=(3,1),b=(1,3),c=(k,7),若(a-c)∥b,则k=________. 1.在解决具体问题时,合理地选择基底会给解题带来便利.在解有关三角形的问题时,可以不去特意选择两个基本向量,而可以用三边所在的三个向量,最终可以依据需要任意留下两个即可,这样思考问题要简洁得多. 2.平面直角坐标系中,以原点为起点的向量=a,点A的位置被a所唯一确定,此时a的坐标与点A的坐标都是(x,y).向量的坐标表示和以坐标原点为起点的向量是一一对应的,即向量(x,y)向量点A(x,y).要把点的坐标与向量的坐标区分开,相等的向量坐标是相同的,但起点、终点的坐标可以不同,也不能认为向量的坐标是终点的坐标,如A(1,2),B(3,4),则=(2,2). (满分:75分) 一、选择题(每小题5分,共25分) 1.已知a,b是不共线的向量,若=λ1a+b,=a+λ2b, (λ1,λ2∈R),则A、B、C三点共线的充要条件为 ( ) A.λ1=λ2=-1 B.λ1=λ2=1 C.λ1λ2-1=0 D.λ1λ2+1=0 2.如图所示,平面内的两条相交直线OP1和OP2将该平面分割成四个部分Ⅰ、Ⅱ、Ⅲ、Ⅳ(不包括边界).若=a+b,且点P落在第Ⅲ部分,则实数a,b满足 ( ) A.a>0,b>0 B.a>0,b<0 C.a<0,b>0 D.a<0,b<0 3.(2011·湛江月考)设两个向量a=(λ+2,λ2-cos2α)和b=,其中λ、m、α为实数.若a=2b,则的取值范围是 ( ) A.[-6,1] B.[4,8] C.(-∞,1] D.[-1,6] 4.设0≤θ≤2π时,已知两个向量=(cos θ,sin θ),=(2+sin θ,2-cos θ),则向量长度的最大值是 ( ) A. B. C.3 D.2 5.在平行四边形ABCD中,AC为一条对角线,若=(2,4),=(1,3),则等于( ) A.(-2,-4) B.(-3,-5) C.(3,5) D.(2,4) 题号 1 2 3 4 5 答案 二、填空题(每小题4分,共12分) 6.(2011·烟台模拟)如图所示,在△ABC中,点O是BC的中点.过点O的直线分别交直线AB、AC于不同的两点M、N,若=m,=n,则m+n的值为______. 7.在平面直角坐标系xOy中,四边形ABCD的边AB∥DC,AD∥BC.已知A(-2,0),B(6,8),C(8,6),则D点的坐标为________. 8.(2009·天津)在四边形ABCD中,==(1,1),·+·=·,则四边形ABCD的面积为________. 三、解答题(共38分) 9.(12分)已知A、B、C三点的坐标分别为(-1,0)、(3,-1)、(1,2),并且=,=.求证:∥. 10.(12分)(2011·宣城模拟)在△ABC中,a、b、c分别是角A、B、C的对边,已知向量m=(a,b),向量n=(cos A,cos B),向量p=(2sin,2sin A),若m∥n,p2=9,求证:△ABC为等边三角形. 11.(14分)如图,在边长为1的正△ABC中,E,F分别是边AB,AC上的点,若=m,=n,m,n∈(0,1).设EF的中点为M,BC的中点为N. (1)若A,M,N三点共线,求证:m=n; (2)若m+n=1,求的最小值. 答案 自主梳理 1.不共线 有且只有 λ1e1+λ2e2 基底 2.(1)夹角 (2)[0,π] 0 π (3) a⊥b 3.相互垂直 4.(x,y) 坐标 (x,y) x轴 y轴 5.(1)(x1+x2,y1+y2) (x1-x2,y1-y2) (λx1,λy1) (2)终点 始点 6.x1y2-x2y1=0 7.(1) (2) 自我检测 1.A [由x=4知|a|==5;由|a|==5,得x=4或x=-4.故“x=4”是“|a|=5”的充分而不必要条件.] 2.B [∵a∥b,∴×-sin αcos α=0, ∴sin 2α=1,2α=90°,α=45°.] 3.A [c=a+λb=(6,-4+2λ),代入y=sin x得, -4+2λ=sin =1,解得λ=.] 4.-1 解析 a+b=(1,m-1),由(a+b)∥c, 得1×2-(m-1)×(-1)=0,所以m=-1. 5.2 解析 建立如图所示的坐标系, 则A(1,0),B(cos 120°,sin 120°), 即B(-,). 设=,则= (cos α,sin α). ∵=x+y =(x,0)+=(cos α,sin α). ∴ ∴ ∴x+y=sin α+cos α=2sin(α+30°). ∵0°≤α≤120°,∴30°≤α+30°≤150°. ∴x+y有最大值2,当α=60°时取最大值. 课堂活动区 例1 解题导引 本题利用方程的思想,设=ma+nb,通过建立关于m、n的方程求解,同时留意体会应用向量法解决平面几何问题的方法. 解 设=ma+nb (m,n∈R), 则=-=(m-1)a+nb, =-=b-a=-a+b. 由于A,M,D三点共线,所以=,即m+2n=1. 而=-=a+nb, =-=b-a=-a+b, 由于C,M,B三点共线,所以=, 即4m+n=1.由 解得 所以=a+b. 变式迁移1 6 解析 如右图,=+ =λ+μ 在△OCD中,∠COD=30°,∠OCD=∠COB=90°, 可求||=4,同理可求||=2, ∴λ=4,μ=2,λ+μ=6. 例2 解 ∵A(-2,4),B(3,-1),C(-3,-4), ∴=(1,8),=(6,3). ∴=3=(3,24), =2=(12,6). 设M(x,y),则=(x+3,y+4)=(3,24), ∴ ∴ ∴M(0,20). 同理可得N(9,2),因此=(9,-18). ∴所求M(0,20),N(9,2),=(9,-18). 变式迁移2 (5,4) 解析 ∵向量与a同向, ∴设=(2t,3t) (t>0). 由||=2,∴4t2+9t2=4×13.∴t2=4. ∵t>0,∴t=2.∴=(4,6). 设B为(x,y),∴ ∴ 例3 解 (1)∵a=mb+nc,m,n∈R, ∴(3,2)=m(-1,2)+n(4,1)=(-m+4n,2m+n). ∴ 解之得 (2)∵(a+kc)∥(2b-a), 且a+kc=(3+4k,2+k),2b-a=(-5,2), ∴(3+4k)×2-(-5)×(2+k)=0, ∴k=-. 变式迁移3 5 解析 ∵a-c=(3,1)-(k,7)=(3-k,-6), 且(a-c)∥b,∴=,∴k=5. 课后练习区 1.C [∵A、B、C三点共线⇔与共线⇔=k⇔∴λ1λ2-1=0.] 2.B [由于点P落在第Ⅲ部分,且=a+b,则依据实数与向量的积的定义及平行四边形法则知a>0,b<0.] 3.A [∵2b=(2m,m+2sin α),∴λ+2=2m, λ2-cos2α=m+2sin α,∴(2m-2)2-m=cos2α+2sin α, 即4m2-9m+4=1-sin2α+2sin α. 又∵-2≤1-sin2α+2sin α≤2, ∴-2≤4m2-9m+4≤2,解得≤m≤2, ∴≤≤4.又∵λ=2m-2, ∴=2-,∴-6≤2-≤1.] 6.2 解析 方法一 若M与B重合,N与C重合, 则m+n=2. 方法二 ∵2=+=m+n, ==. ∵O、M、N共线,∴+=1. ∴m+n=2. 7.(0,-2) 解析 设D点的坐标为(x,y), 由题意知=, 即(2,-2)=(x+2,y),所以x=0,y=-2,∴D(0,-2). 8. S=||=||sin 60°=××=. 9.证明 设E、F两点的坐标分别为(x1,y1)、(x2,y2),则依题意,得=(2,2),=(-2,3),=(4,-1). ∴==, ==. ∴=(x1,y1)-(-1,0)=, =(x2,y2)-(3,-1)=.…………………………………………………(4分) ∴(x1,y1)=+(-1,0) =, (x2,y2)=+(3,-1)=. ∴=(x2,y2)-(x1,y1)=.…………………………………………………(8分) 又∵=(4,-1),∴4×-(-1)×=0, ∴∥.……………………………………………………………………………(12分) 10.证明 ∵m∥n,∴acos B=bcos A. 由正弦定理,得sin Acos B=sin Bcos A, 即sin(A-B)=0. ∵A、B为三角形的内角, ∴-π<A-B<π. ∴A=B.……………………………………………………………………………………(5分) ∵p2=9,∴8sin2+4sin2A=9. ∴4[1-cos(B+C)]+4(1-cos2A)=9. ∴4cos2A-4cos A+1=0, 解得cos A=.……………………………………………………………………………(10分) 又∵0<A<π,∴A=. ∴△ABC为等边三角形.………………………………………………………………(12分) 11.解 (1)由A,M,N三点共线,得∥, 设=λ(λ∈R),即(+)=λ(+), 所以m+n=λ(+),所以m=n.…………………………………………(5分) (2)由于=-=(-)=(-)= (1-m) + (1-n), ……………………………………………………………………………………………(8分) 又m+n=1,所以= (1-m) +m, 所以||2=(1-m)22+m22+(1-m)m·………………………………(10分) =(1-m)2+m2+(1-m)m =(m-)2+. 故当m=时,||min=.……………………………………………………………(14分)- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 高考 数学 福建 一轮 26 平面 向量 基本 定理 坐标 表示
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文