高中数学(北师大版)选修2-1教案:第3章-曲线与方程-第三课时参考教案.docx
《高中数学(北师大版)选修2-1教案:第3章-曲线与方程-第三课时参考教案.docx》由会员分享,可在线阅读,更多相关《高中数学(北师大版)选修2-1教案:第3章-曲线与方程-第三课时参考教案.docx(3页珍藏版)》请在咨信网上搜索。
3.4.3 直线与圆锥曲线的交点 一、教学目标 1、学问教学点:使同学把握点、直线与圆锥曲线的位置及其判定,重点把握直线与圆锥曲线相交的有关问题. 2、力气训练点:通过对点、直线与圆锥曲线的位置关系的争辩,培育同学综合运用直线、圆锥曲线的各方面学问的力气. 3、学科渗透点:通过点与圆锥曲线的位置及其判定,渗透归纳、推理、推断等方面的力气. 二、教材分析 1.重点:直线与圆锥曲线的相交的有关问题.(解决方法:先引导同学归纳出直线与圆锥曲线的位置关系,再加以应用.) 2.难点:圆锥曲线上存在关于直线对称的两点,求参数的取值范围.(解决方法:利用判别式法和内点法进行讲解.) 3.疑点:直线与圆锥曲线位置关系的判定方法中△=0不是相切的充要条件.(解决方法:用图形向同学讲清楚这一点.) 三、教学方法:探析归纳,讲练结合 四、教学过程 (一)问题提出 1.点P(x0,y0)和圆锥曲线C:f(x,y)=0有哪几种位置关系?它们的条件是什么? 引导同学回答,点P与圆锥曲线C的位置关系有:点P在曲线C上、点P在曲线C内部(含焦点区域)、点P在曲线的外部(不含焦点的区域).那么这三种位置关系的条件是什么呢?这是我们要分析的问题之一. 2.直线l:Ax+By+C=0和圆锥曲线C:f(x,y)=0有哪几种位置关系? 引导同学类比直线与圆的位置关系回答.直线l与圆锥曲线C的位置关系可分为:相交、相切、相离.那么这三种位置关系的条件是什么呢?这是我们要分析的问题之二. (二)讲授新课 1.点M(x0,y0)与圆锥曲线C:f(x,y)=0的位置关系 的焦点为F1、F2,y2=2px(p>0)的焦点为F,确定点为P(x0,y0),M点到抛物线的准线的距离为d,则有:(由老师引导同学完成,填好小黑板) 上述结论可以利用定比分点公式,建立两点间的关系进行证明. 2.直线l∶Ax+Bx+C=0与圆锥曲线C∶f(x,y)=0的位置关系: 直线与圆锥曲线的位置关系可分为:相交、相切、相离.对于抛物线来说,平行于对称轴的直线与抛物线相交于一点,但并不是相切;对于双曲线来说,平行于渐近线的直线与双曲线只有一个交点,但并不相切.这三种位置关系的判定条件可引导同学归纳为: 留意:直线与抛物线、双曲线有一个公共点是直线与抛物线、双曲线相切的必要条件,但不是充分条件. 3.应用 求m的取值范围. 解法一:考虑到直线与椭圆总有公共点,由直线与圆锥曲线的位置关系的充要条件可求. 由一名同学演板.解答为:由椭圆方程及椭圆的焦点在x轴上,知:0<m<5. 又 ∵直线与椭圆总有公共点, 即(10k)2-4x(m+5k2)×5(1-m)≥0,亦即5k2≥1-m对一切实数k成立.∴1-m≤0,即m≥1.故m的取值范围为m∈(1,5). 解法二:由于直线过定点(0,1),而直线与椭圆总有公共点,所以定点(0,1)必在椭圆内部或边界上,由点与椭圆的位置关系的充要条件易求. 另解:由椭圆方程及椭圆的焦点在x轴上知:0<m<5.又∵直线与椭圆总有公共点. ∴ 直线所经过的定点(0,1)必在椭圆内部或边界上. 故m的取值范围为m∈(1,5), 小结:解法一由直线与圆锥曲线的位置关系的充要条件求,思路易得,但计算量大;解法二由点与圆锥曲线的位置关系的充要条件求,思路机敏,且简捷. 称,求m的取值范围. 解法一:利用判别式法. 并整理得: ∵直线l′与椭圆C相交于两点, 解法二:利用内点法. 设两对称点为P1(x1,y1),P2(x2,y2),P1P2的中点为M(x0,y0), ∴y1+y2=3(x1+x2).(1) 小结:本例中的判别式法和内点法,是解决圆锥曲线上存在两点关于直线的对称的一般方法,类似可解抛物线、双曲线中的对称问题. 练习1:(1)直线过点A(0,1)且与抛物线y2=x只有一个公共点,这样的直线有几条? (2)过点P(2,0)的直线l与双曲线x2-y2=1只有一个公共点,这样的直线有几条? 由同学练习后口答:(1)3条,两条切线和一条平行于x轴的直线;(2)2条,留意到平行于渐近线的直线与双曲线只有一个交点,故这样的直线也只有2条. 练习2:求曲线C∶x2+4y2=4关于直线y=x-3对称的曲线C′的方程. 由老师引导方法,同学演板完成.解答为:设(x′,y′)是曲线C上任意一点,且设它关于直线y=x-3的对称点为(x,y). 又(x′,y′)为曲线C上的点,∴(y+3)2+4(x-3)2=4.∴曲线C的方程为:4(x-3)2+(y+3)2=4. (三)小结:本课主要争辩了点、直线与圆锥曲线的三种位置关系及重要条件. (四)、布置作业 的值. 2.k取何值时,直线y=kx与双曲线4x2-y2=16相交、相切、相离? 3.已知抛物线x=y2+2y上存在关于直线y=x+m对称的相异两点,求m的取值范围. 作业答案:1.由弦长公式易求得:k=-4 当4-k2=0,k=±2, y=±2x为双曲线的渐近线,直线与双曲线相离当4-k2≠0时,△=4(4-k2)×(-6);(1)当△>0,即-2<k<2时,直线与双曲线有两个交点;(2)当△<0,即k<-2或k>2时,直线与双曲线无交点;(3)当△=0,即k=±2时,为渐近线,与双曲线不相切。故当-2<k<2时,直线与双曲线相交。当k≤-2或k≥2时,直线与双曲线相离。 五、教后反思:- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 优教通-同步备课 优教通 同步 备课 高中数学 北师大 选修 教案 曲线 方程 第三 课时 参考
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文