高中数学(北师大版)必修一教案:第2章-函数的单调性-参考教案.docx
《高中数学(北师大版)必修一教案:第2章-函数的单调性-参考教案.docx》由会员分享,可在线阅读,更多相关《高中数学(北师大版)必修一教案:第2章-函数的单调性-参考教案.docx(5页珍藏版)》请在咨信网上搜索。
《函数的单调性》教案 一、教材分析-----教学内容、地位和作用 本课是北师大版新课标一般高中数学必修一其次章第3节《函数的单调性》的内容,函数的单调性是函数众多性质中的重要性质之一,函数的单调性一节中的学问是今后争辩具体函数的单调性理论基础;在解决函数值域、定义域、不等式、比较两数大小等具体问题中均有着广泛的应用;在历年的高考中对函数的单调性考查每年都有涉及;同时在这一节中利用函数图象来争辩函数性质的数形结合思想将贯穿于我们整个高中数学教学。 在同学现有认知结构中能依据函数的图象观看出“随着自变量的增大函数值增大”等变化趋势,所以在教学中要充分利用好函数图象的直观性、发挥好多媒体教学的优势; 在本节课是以函数的单调性的概念为主线,它始终贯穿于整个课堂教学过程;这是本节课的重点内容。 利用函数的单调性的定义证明具体函数的单调性一个难点,也是对函数单调性概念的深层理解,且在“作差、变形、定号”过程同学不易把握。 同学刚刚接触这种证明方法,给出肯定的步骤是必要的,有利于同学理解概念,也可以对同学把握证明方法、形成证明思路有所挂念。另外,这也是以后要学习的不等式证明的比较法的基本思路,现在提出来对今后的教学也有了肯定的铺垫。 二、教学目标: 依据新课标的要求,以及对教材结构与内容分析,考虑到同学已有的认知结构及心理特征 ,制定如下教学目标: (一)三维目标 1 学问与技能: (1) 使同学理解函数单调性的概念, 能推断并证明一些简洁函数在给定区间上的单调性。 (2) 通过函数单调性的教学,逐步培育同学观看、分析、概括与合作力量; 2 过程与方法: (1) 通过本节课的学习,通过“数与形”之间的转换,渗透数形结合的数学思想。 (2) 通过探究活动,明白考虑问题要细致、缜密,说理要严密、明确。 3 情感,态度与价值观:在公平的教学氛围中,通过同学之间、师生之间的沟通、合作与评价,拉近同学之间、师生之间的情感距离,培育同学对数学的爱好。。 (二)重点、难点 重点:函数单调性的概念: 为了突出重点,使同学理解该概念,整个过程分为: 作图象并观看图象→争辩:函数图象的变化趋势是什么?→ 在这种变化趋势下, x与函数值y是如何相互影响的?→你能从量的角度出一个缜密的,完善的定义来吗? 每个步骤都是在老师的参与下与引导下,通过同学与同学之间,师生之间的合作沟通,不断反省,探究,直到完善结论,最终达到一个严密,简洁的定义。 难点:函数单调性的推断与推证: 突破该难点的:通过对比、分析定义,引导同学,概括出证明方法及步骤:“取量定大小,作差定符号,推断得结论”,并留意解题过程的规范性与严谨性。 四、教学方法: 合作学习认为教学是师生之间、生生之间相互作用的过程,强调多边互动,共同把握学问。视教学为师生公平参与和互动的过程,强调老师只是小组中的一般一员,起到一个引导者,管理者角色。在课堂教学中要加强学问发生过程的教学,充分调动同学的参与的乐观性,有效地渗透数学思想方法,进展同学共性品质,从而达到提高同学整体的数学素养的目的。 结合教学目标和同学状况我接受合作沟通,探究学习相结合的教学方法。 五 .教学手段 多媒体 六、教学过程 教学环节 教学过程 设计意图 (一)创设情景,引发爱好 从图像你能得到哪些信息?通过这个试验你打算以后如何对待刚学过的学问? 师: 在生活中,我们关怀很多数据的变化规律,了解了这些数据的变化规律对我们的生活很有挂念。 问题:你能举诞生活中其他的数据变化状况吗? 如:水位凹凸、股票价格、降雨量等 归纳:用函数的观点看,其实这些例子反映的就是随着自变量的的变化,函数值是变大还是变小。也就是争辩其中两个变量如何相互影响的,这也是我们今日所要争辩的主要课题。 行为学习理论者强调环境对学习产生的影响。当学习者对某种特殊的刺激做出反应时,就产生了“学习”。 依据教材学问,渗透新课标理念,通过与实际问题的联系,揭示我们争辩此节内容的现实意义,目的引发同学学习爱好,有利于同学学习动力的产生。 要点:短,平,快。 ︵ 二︶合作沟通,建构数学 多媒体呈现在上节课所做的几个函数图象,并据此争辩下列问题, 问题1、说一说所画函数的图象的变化趋势。 观看得到:随着x值的增大,函数的函数图象有的呈渐渐上升的趋势,有的呈下降的趋势,有的在一个区间内呈上升趋势,在另一个区间内呈渐渐下降的趋势。 (留意肯定要提示:是从左到右的看) 问题2:你能明确的说出“图象呈渐渐上升趋势”的意思吗? 争辩得到: 在某一个区间内,当x值增大时,函数值y也增大图象在该区间内呈上升趋势。 在某一个区间内,当x值增大时,函数值y也反而减小图象在该区间内呈下降趋势。 在众多的函数中,很多函数都具有这种性质,因此我们有必要对函数的这种性质做进一步的争辩与争辩。这就是我们今日这一节课的主题。 函数的这种性质,我们就称为函数的单调性。 (对每一个问题,小组成员先独立做,再分别说出自己的想法,然后争辩,形成集体的意见。) 1、通过一系列的问题,引发对概念的全面思考。从具体到抽象,再从抽象到具体,并通过合作沟通,增加同学对概念的理解,不断的修正、完善结论,达到建构数学的目的。 2、教学实践证明,小组内成员合作,组间成员竞争的争辩是一种有效的教学策略,使得整个评价的重心同个人之间竞争转为团体合作达标。并能使老师与同学、同学与同学之间有更多的交往、互动的机会。 ︵ 二︶合作沟通,建构数学 问题3:如何用数学语言表述一个函数是在整个定义域内是增加的呢? 我们刚才已经对函数的单调性,做了定性的分析,我们如何从量的角度来刻画这种性质。你能给出一个精确 的定义来吗?请用你自己的话表达出来,并说给你的小组成员听,并与他沟通后,形成集体意见,再呈现给大家。 老师巡察,视小组争辩状况,可提示: (1)对于某函数,若在其定义域上,当x=1时, y=1;当 x=2时,y=3 ,能否说在其定义域上 y 随 x 的增大而增大呢? (2)若x=1,2,3,4,时,相应地 y=1,3,4,6,能否说在其定义域上,y 随x 的增大而增大呢? (3)若有n个正数x1< x2<x3<···< xn,它们的函数值满足: y1< y2<y3<···< yn.能否就说在其定义域 上y随着x的增大,而增大呢? 定义:对于函数f(x)的定义域内的任意两个值 ⑴若当<时,都有f()<f(),则说f(x)在定义域内是增加的(递增的),即称这个函数为增函数; ⑵若当<时,都有f()>f(),则说f(x) 在定义域内是削减的(递减的),即称这个函数为减函数。 增函数的本质是在整个定义域上,较大的自变量对应较大的函数值,减函数反之。 单调区间 ;假如函数y=f(x)在定义域内某个区间I上是增加的或是削减的,那么就说函数y=f(x)在区间I上具有单调性. 单调增区间和单调减区间统称为单调区间. 它也是引导同学乐观参与教学过程的重要措施,是培育同学合作精神和激发同学创新意识的重要手段,也是促使每个同学得到充分进展的有效途径 3、重点:同学能否抓住定义中的关键词“给定区间”、“任意”和“都有”,是能否正确,深化透彻地理解和把握概念的重要一环。 分析定义,使同学把定义与图形结合起来,使新旧学问 融为一体,加深对概念的理解,渗透数形结合的分析问题的数学思想方法。 ︵ 三︶数学运用,巩固新知 让同学进一步理解一般函数单调区间的定义, (1)区间的端点要不要? (2)在这里肯定要强调单调性只是函数的“局部性质”它与区间密不行分。-----不能把函数的单调区间写成 ︵ 三︶数学运用,巩固新知 2、由于例2难度较大,同学难以从中归纳出 证明方法及步骤,因而有必要先具体讲解,通过分析、引导同学抽象、概括出方法及步骤,提示同学留意证明过程的规范性及严谨性。 归纳证明方法并加以比较说明;使同学突破本节的难点,把握重点内容。 基本步骤: “取量定大小,作差定符号,推断定结论”其中其次环节是难点“作差→变形→推断正负”。 ︵ 三︶数学运用,巩固新知 练习的设定也是由浅入深层层推动的。 (四)回顾总结,加深理解 请同学小结一下这节课的主要内容,有哪些是词语特殊留意的?(请一个思路清楚,擅长表达的同学口述,老师可从中赐予提示) 1、函数单调性的定义,留意定义中的关键词。 2、证明函数单调性的一般步骤; 3、在写单调区间时,不要轻易用并集的符号连接; 课后学问性内容总结,把课堂内容转化为同学的素养 ( 五)兼顾差异,分层练习 必做:习题2.3:A组第2、3、4题 选做:争辩 的单调性,并给出严格证明,你能求出该函数的值域吗? 1、针对同学个体的差异设置分层练习。既留意课内基础学问把握,又兼顾了有余力的同学的力量的提高。 2、提出新的课题是想把问题争辩引向课外,激发同学爱好,为以后学习“最值”作好充分的预备。 特殊说明: 增函数和减函数的概念新旧教材有所不同,本教案以新教材为准。 旧教材:假如对于属于定义域内某个区间上的任意两个自变量的值,,当<时,都有f()<f(),那么就说f(x)在这个区间上是增函数;当<时,都有f()>f(),那么就说f(x)在这个区间上是减函数。 新教材:假如函数y=f(x)在整个定义域内是增加的或是削减的,我们分别称这个函数为增函数或减函数。- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 同步备课 同步 备课 高中数学 北师大 必修 教案 函数 调性 参考
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文