2020-2021学年人教A版高中数学选修2-2双基限时练7.docx
《2020-2021学年人教A版高中数学选修2-2双基限时练7.docx》由会员分享,可在线阅读,更多相关《2020-2021学年人教A版高中数学选修2-2双基限时练7.docx(3页珍藏版)》请在咨信网上搜索。
双基限时练(七) 1.函数f(x)的定义域为开区间(a,b),导数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内微小值有( ) A.1个 B.2个 C.3个 D.4个 解析 设x0为f(x)的一个微小值点,则在x0左侧f′(x)<0,右侧f′(x)>0,由y=f′(x)的图象知,只有一个适合. 答案 A 2.已知实数a,b,c,d成等比数列,且曲线y=3x-x3的极大值点坐标为(b,c),则ad等于( ) A.2 B.1 C.-1 D.-2 解析 y′=3-3x2,令y′=0,得x=±1.可推断函数y=3x-x3在x=1处取得极大值,因此极大值点的坐标为(1,2),即b=1,c=2,又ad=bc,∴ad=2. 答案 A 3.三次函数当x=1时,有极大值,当x=3时,有微小值,且函数的图象过原点,则该三次函数为( ) A.y=x3+6x2+9x B.y=x3-6x2+9x C.y=x3-6x2-9x D.y=x3+6x2-9x 解析 本题若直接求解,相当于解一个大题,本题依据小题小做的原则,可接受试验找答案,明显四个函数的图象都过原点,下面分别求导函数,验证x=1和x=3都是导函数的根,对于B,y′=3x2-12x+9=3(x-1)(x-3).当x=1和x=3时,有y′=0.而其他不适合题意. 答案 B 4.已知函数y=2x3+ax2+36x-24在x=2处有极值,则该函数的一个递增区间是( ) A.(2,3) B.(3,+∞) C.(2,+∞) D.(-∞,3) 解析 y′=6x2+2ax+36.依题意知6×22+4a+36=0,∴a=-15,∴y′=6x2-30x+36=6(x-2)(x-3),易知当x>3时,y′>0,∴函数的一个增区间为(3,+∞). 答案 B 5.函数f(x)=x3-2ax2+3a2x在(0,1)内有微小值,则实数a的取值范围是( ) A.(0,+∞) B.(-∞,3) C. D. 解析 f′(x)=x2-4ax+3a2=(x-a)(x-3a),易知a≠0,∴f′(0)=3a2>0,Δ=(-4a)2-12a2=4a2>0,依题意可得解得0<a<. 答案 C 6.已知函数f(x)=x3+3ax2+3(a+2)x+1既有极大值,又有微小值,则实数a的取值范围是________. 解析 f′(x)=3x2+6ax+3(a+2),由题意知f′(x)=0有两个不同的实数根,∴Δ=36a2-36(a+2)>0,解得a<-1,或a>2. 答案 a>2或a<-1 7.已知函数f(x)=-x3+3x2+9x+m,在R上的极大值为20,则实数m=________. 解析 f′(x)=-3x2+6x+9=-3(x+1)(x-3), 当-1<x<3时,f′(x)>0, 当x>3时,f′(x)<0, ∴当x=3时,f(x)有极大值,则 f(3)=-33+3×32+9×3+m=20, ∴m=-7. 答案 -7 8.曲线y=x2+4lnx上切线斜率的微小值为________. 解析 y′=x+(x>0),令g(x)=x+,则g′(x)=1-.令g′(x)=0,得x=2.当x∈(0,2)时,g′(x)<0;当x∈(2,+∞)时g′(x)>0,∴当x=2时,g(x)有微小值g(2)=2+=4. 答案 4 9.函数y=f(x)的导函数f′(x)的图象如图所示,给出下列命题: ①-3是函数y=f(x)的极值点; ②-1是函数y=f(x)的最小值点; ③y=f(x)在区间(-3,1)上单调递增; ④y=f(x)在x=0处切线的斜率小于零. 以上正确命题的序号是________. 解析 由f′(x)的图象知,在-3的左右两侧f′(x)符号左负右正,是极值点,故①正确;②错;在(-3,1)上f′(x)≥0,故③正确;k=f′(0)>0,故④错. 答案 ①③ 10.设x=-2,x=4是函数f(x)=x3+ax2+bx的两个极值点. (1)求常数a,b; (2)推断x=-2,x=4是函数f(x)的极大值点还是微小值点,并说明理由. 解 (1)f′(x)=3x2+2ax+b, 由极值点的必要条件可知,x=-2,x=4是方程 f′(x)=0的两根. ∴a=-3,b=-24. (2)f′(x)=3x2-6x-24=3(x+2)(x-4) 当x<-2时,f′(x)>0, 当-2<x<4时,f′(x)<0, 当x>4时,f′(x)>0, ∴x=-2是f(x)的极大值点,x=4是f(x)的微小值点. 11.设函数f(x)=2x3-3(a-1)x2+1,其中a≥1. (1)求f(x)的单调区间; (2)争辩f(x)的极值. 解 由已知得,f′(x)=6x[x-(a-1)], 令f′(x)=0,解得x1=0,x2=a-1, (1)当a=1时,f′(x)=6x2, f(x)在(-∞,+∞)上单调递增. 当a>1时,f′(x)=6x[x-(a-1)]. f′(x),f(x)随x的变化状况如下表: x (-∞,0) 0 (0,a-1) a-1 (a-1,+∞) f′(x) + 0 - 0 + f(x) ↗ 极大值 ↘ 微小值 ↗ 从表上可知,函数f(x)在(-∞,0)上单调递增;在(0,a-1)上单调递减;在(a-1,+∞)上单调递增. (2)由(1)知,当a=1时,函数f(x)没有极值. 当a>1时,函数在x=0处取得极大值1,在x=a-1处取得微小值1-(a-1)3. 12.设f(x)=x3+ax2+bx+1的导数f′(x)满足f′(1)=2a,f′(2)=-b,其中常数a,b∈R. (1)求曲线y=f(x)在点(1,f(1))处的切线方程; (2)设g(x)=f′(x)e-x,求函数g(x)的极值. 解 ∵f(x)=x3+ax2+bx+1, ∴f′(x)=3x2+2ax+b. 令x=1,得f′(1)=3+2a+b, 又f′(1)=2a,∴3+2a+b=2a, ∴b=-3. 令x=2,得f′(2)=12+4a+b, 又f′(2)=-b,∴12+4a+b=-b, 解得a=-. ∴f(x)=x3-x2-3x+1. 从而f(1)=-. 又∵f′(1)=2×(-)=-3. 故曲线y=f(x)在点(1,f(1))处的切线方程为y-(-)=-3(x-1), 即6x+2y-1=0. (2)由(1)知,g(x)=(3x2-3x-3)e-x, ∴g′(x)=(-3x2+9x)e-x=-3x(x-3)e-x. 令g′(x)=0,得x1=0,x2=3. 当x∈(-∞,0)时,g′(x)<0,故g(x)在(-∞,0)上为减函数; 当x∈(0,3)时,g′(x)>0,故g(x)在(0,3)上为增函数; 当x∈(3,+∞)时,g′(x)<0,故g(x)在(3,+∞)上为减函数. 从而可知,函数g(x)在x=0处取得微小值g(0)=-3, 在x=3处取得极大值g(3)=15e-3.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 名师一号 名师 一号 2020 2021 学年 高中数学 选修 限时
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文