分享
分销 收藏 举报 申诉 / 5
播放页_导航下方通栏广告

类型2021高考数学(福建-理)一轮学案35-简单的线性规划问题.docx

  • 上传人:a199****6536
  • 文档编号:3825535
  • 上传时间:2024-07-22
  • 格式:DOCX
  • 页数:5
  • 大小:356.37KB
  • 下载积分:6 金币
  • 播放页_非在线预览资源立即下载上方广告
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2021 高考 数学 福建 一轮 35 简单 线性规划 问题
    资源描述:
    学案35 简洁的线性规划问题 导学目标: 1.从实际情境中抽象出二元一次不等式组.2.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.3.从实际情境中抽象出一些简洁的二元线性规划问题,并能加以解决. 自主梳理 1.二元一次不等式(组)表示的平面区域 (1)推断不等式Ax+By+C>0所表示的平面区域,可在直线Ax+By+C=0的某一侧的半平面内选取一个特殊点,如选原点或坐标轴上的点来验证Ax+By+C的正负.当C≠0时,常选用______________. 对于任意的二元一次不等式Ax+By+C>0(或<0),无论B为正值还是负值,我们都可以把y项的系数变形为正数,当B>0时, ①Ax+By+C>0表示直线Ax+By+C=0______的区域; ②Ax+By+C<0表示直线Ax+By+C=0______的区域. (2)画不等式Ax+By+C>0表示的平面区域时,其边界直线应为虚线;画不等式Ax+By+C≥0表示的平面区域时,边界直线应为实线.画二元一次不等式表示的平面区域,常用的方法是:直线定“界”、原点定“域”. 2.线性规划的有关概念 (1)线性约束条件——由条件列出一次不等式(或方程)组. (2)线性目标函数——由条件列出一次函数表达式. (3)线性规划问题:求线性目标函数在约束条件下的最大值或最小值问题. (4)可行解:满足________________的解(x,y). (5)可行域:全部________组成的集合. (6)最优解:使______________取得最大值或最小值的可行解. 3.利用线性规划求最值,一般用图解法求解,其步骤是: (1)在平面直角坐标系内作出可行域. (2)作出目标函数的等值线. (3)确定最优解:在可行域内平行移动目标函数等值线,从而确定__________. 自我检测 1.(2011·北京东城1月检测)在平面直角坐标系中,若点(-2,t)在直线x-2y+4=0的上方,则t的取值范围是(  ) A.(-∞,1) B.(1,+∞) C.(-1,+∞) D.(0,1) 2.不等式(x-2y+1)(x+y-3)≤0在坐标平面内表示的区域(用阴影部分表示)应是(  ) 3.(2010·重庆)设变量x,y满足约束条件则z=3x-2y的最大值为(  ) A.0 B.2 C.4 D.6 4.(2010·浙江)若实数x,y满足不等式组且x+y的最大值为9,则实数m等于(  ) A.-2 B.-1 C.1 D.2 5.(2010·天津河西高三期中)已知实数x,y满足则z=2x-y的最大值为________. 探究点一 不等式组表示的平面区域 例1 画出不等式组表示的平面区域,并回答下列问题: (1)指出x,y的取值范围; (2)平面区域内有多少个整点? 变式迁移1 (2011·安庆模拟)在平面直角坐标系中,有两个区域M、N,M是由三个不等式y≥0,y≤x和y≤2-x确定的;N是随t变化的区域,它由不等式t≤x≤t+1 (0≤t≤1)所确定.设M、N的公共部分的面积为f(t),则f(t)等于(  ) A.-2t2+2t B.(t-2)2 C.1-t2 D.-t2+t+ 探究点二 求目标函数的最值 例2 (2010·天津)设变量x,y满足约束条件则目标函数z=4x+2y的最大值为(  ) A.12 B.10 C.8 D.2 变式迁移2 (2010·山东)设变量x,y满足约束条件则目标函数z=3x-4y的最大值和最小值分别为(  ) A.3,-11 B.-3,-11 C.11,-3 D.11,3 探究点三 线性规划的实际应用 例3 某公司方案2010年在甲、乙两个电视台做总时间不超过300分钟的广告,广告总费用不超过9万元.甲、乙电视台的广告收费标准分别为500元/分和200元/分.假定甲、乙两个电视台为该公司所做的每分钟广告能给公司带来的收益分别为0.3万元和0.2万元.问:该公司如何支配在甲、乙两个电视台的广告时间,才能使公司的收益最大,最大收益是多少万元? 变式迁移3 (2010·四川)某加工厂用某原料由甲车间加工出A产品,由乙车间加工出B产品,甲车间加工一箱原料需耗费工时10小时,可加工出7千克A产品,每千克A产品获利40元,乙车间加工一箱原料需耗费工时6小时,可加工出4千克B产品,每千克B产品获利50元.甲、乙两车间每天共能完成至多70箱原料的加工,每天甲、乙两车间耗费工时总和不得超过480小时,甲、乙两车间每天总获利最大的生产方案为(  ) A.甲车间加工原料10箱,乙车间加工原料60箱 B.甲车间加工原料15箱,乙车间加工原料55箱 C.甲车间加工原料18箱,乙车间加工原料50箱 D.甲车间加工原料40箱,乙车间加工原料30箱 数形结合思想的应用 例 (12分)变量x、y满足 (1)设z=4x-3y,求z的最大值; (2)设z=,求z的最小值; (3)设z=x2+y2,求z的取值范围. 【答题模板】 解  由约束条件 作出(x,y)的可行域如图所示. 由,解得A. 由,解得C(1,1).由, 解得B(5,2).[4分] (1)由z=4x-3y,得y=x-. 当直线y=x-过点B时,-最小,z最大. ∴zmax=4×5-3×2=14.[6分] (2)∵z==,∴z的值即是可行域中的点与原点O连线的斜率. 观看图形可知zmin=kOB=.[9分] (3)z=x2+y2的几何意义是可行域上的点到原点O的距离的平方.结合图形可知,可行域上的点到原点的距离中, dmin=|OC|=,dmax=|OB|=.∴2≤z≤29.[12分] 【突破思维障碍】 1.求解目标函数不是直线形式的最值的思维程序是: →→→ 2.常见代数式的几何意义主要有以下几点: (1)表示点(x,y)与原点(0,0)的距离; 表示点(x,y)与点(a,b)的距离. (2)表示点(x,y)与原点(0,0)连线的斜率; 表示点(x,y)与点(a,b)连线的斜率. 这些代数式的几何意义能使所求问题得以转化,往往是解决问题的关键. 【易错点剖析】 本题会毁灭对(2)(3)无从下手的状况,缘由是同学没有数形结合思想的应用意识,不知道从目标函数表示的几何意义入手解题. 1.在直角坐标系xOy内,已知直线l:Ax+By+C=0与点P(x0,y0),若Ax0+By0+C>0,则点P在直线l上方,若Ax0+By0+C<0,则点P在直线l下方. 2.在直线l:Ax+By+C=0外任意取两点P(x1,y1)、Q(x2,y2),若P、Q在直线l的同一侧,则Ax1+By1+C 与Ax2+By2+C同号;若P、Q在直线l异侧,则Ax1+By1+C与Ax2+By2+C异号,这个规律可概括为“同侧同号,异侧异号”. 3.线性规划解决实际问题的步骤:①分析并将已知数据列出表格;②确定线性约束条件;③确定线性目标函数;④画出可行域;⑤利用线性目标函数(直线)求出最优解;⑥实际问题需要整数解时,应适当调整,以确定最优解. (满分:75分) 一、选择题(每小题5分,共25分) 1.(2011·龙岩月考)下面给出的四个点中,位于表示的平面区域内的点是(  ) A.(0,2) B.(-2,0) C.(0,-2) D.(2,0) 2.在平面直角坐标系xOy中,已知平面区域A={(x,y)|x+y≤1,且x≥0,y≥0},则平面区域B={(x+y,x-y)|(x,y)∈A}的面积为(  ) A.2 B.1 C. D. 3.(2011·广东)已知平面直角坐标系xOy上的区域D由不等式组给定,若M(x,y)为D上的动点,点A的坐标为(,1),则z=·的最大值为(  ) A.4 B.3 C.4 D.3 4.(2011·安徽)设变量x,y满足|x|+|y|≤1,则x+2y的最大值和最小值分别为(  ) A.1,-1 B.2,-2 C.1,-2 D.2,-1 5.(2011·四川)某运输公司有12名驾驶员和19名工人,有8辆载重量为10吨的甲型卡车和7辆载重量为6吨的乙型卡车.某天需送往A地至少72吨的货物,派用的每辆车需满载且只运送一次,派用的每辆甲型卡车需配2名工人,运送一次可得利润450元;派用的每辆乙型卡车需配1名工人,运送一次可得利润350元.该公司合理方案当天派用两类卡车的车辆数,可得最大利润z等于(  ) A.4 650元 B.4 700元 C.4 900元 D.5 000元 二、填空题(每小题4分,共12分) 6.(2010·北京改编)设不等式组表示的平面区域为D.若指数函数y=ax的图象上存在区域D上的点,则a的取值范围是________. 7.(2011·长沙一中月考)已知实数x、y同时满足以下三个条件:①x-y+2≤0;②x≥1;③x+y-7≤0,则的取值范围是______________. 8.(2011·湖南师大月考)设不等式组表示的平面区域为M,若函数y=k(x+1)+1的图象经过区域M,则实数k的取值范围是____________. 三、解答题(共38分) 9.(12分)(2010·广东)某养分师要为某个儿童预订午餐和晚餐.已知一个单位的午餐含12个单位的碳水化合物,6个单位的蛋白质和6个单位的维生素C;一个单位的晚餐含8个单位的碳水化合物,6个单位的蛋白质和10个单位的维生素C.另外,该儿童这两餐需要的养分中至少含64个单位的碳水化合物,42个单位的蛋白质和54个单位的维生素C. 假如一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的养分要求,并且花费最少,应当为该儿童分别预订多少个单位的午餐和晚餐? 10.(12分)已知 求:(1)z=x+2y-4的最大值; (2)z=x2+y2-10y+25的最小值; (3)z=的范围. 11.(14分)(2011·杭州调研)预算用2 000元购买单件为50元的桌子和20元的椅子,期望使桌子和椅子的总数尽可能的多,但椅子数不少于桌子数,且不多于桌子数的1.5倍,问桌子、椅子各买多少才行? 学案35 简洁的线性规划问题 自主梳理 1.(1)原点(0,0) ①上方 ②下方 2.(4)线性约束条件 (5)可行解 (6)目标函数 3.(3)最优解 自我检测 1.B 2.C 3.C 4.C 5.7 课堂活动区 例1 解题导引 在封闭区域内找整点数目时,若数目较小时,可画网格逐一数出;若数目较大,则可分x=m逐条分段统计. 解 (1)不等式x-y+5≥0表示直线x-y+5=0上及右下方的点的集合.x+y≥0表示直线x+y=0上及右上方的点的集合,x≤3表示直线x=3上及左方的点的集合. 所以,不等式组 表示的平面区域如图所示. 结合图中可行域得x∈,y∈[-3,8]. (2)由图形及不等式组知 当x=3时,-3≤y≤8,有12个整点; 当x=2时,-2≤y≤7,有10个整点; 当x=1时,-1≤y≤6,有8个整点; 当x=0时,0≤y≤5,有6个整点; 当x=-1时,1≤y≤4,有4个整点; 当x=-2时,2≤y≤3,有2个整点; ∴平面区域内的整点共有2+4+6+8+10+12=42(个). 变式迁移1 D [作出由不等式组组成的平面区域M,即△AOE表示的平面区域, 当t=0时, f(0)=×1×1=, 当t=1时, f(1)=×1×1=, 当0<t<1时,如图所示,所求面积为f(t)=S△AOE-S△OBC-S△FDE =×2×1-t2-[2-(t+1)]2=-t2+t+, 即f(t)=-t2+t+,此时f(0)=,f(1)=, 综上可知选D.] 例2 解题导引 1.求目标函数的最值,必需先精确     地作出线性可行域再作出目标函数对应的直线,据题意确定取得最优解的点,进而求出目标函数的最值. 2.线性目标函数z=ax+by取最大值时的最优解与b的正负有关,当b>0时,最优解是将直线ax+by=0在可行域内向上平移到端点(一般是两直线交点)的位置得到的,当b<0时,则是向下方平移. B  [画出可行域如图中阴影部分所示,目标函数z=4x+2y可转化为y=-2x+, 作出直线y=-2x并平移,明显当其过点A时纵截距最大.解方程组 得A(2,1),∴zmax=10.] 变式迁移2 A [作出可行域如图所示. 目标函数y=x-z,则过B、A点时分别取到最大值与最小值.易求B(5,3),A(3,5). ∴zmax=3×5-4×3=3,zmin=3×3-4×5=-11.] 例3 解题导引 解线性规划应用问题的一般步骤是:(1)分析题意,设出未知量; (2)列出线性约束条件和目标函数;(3)作出可行域并利用数形结合求解;(4)作答. 解 设公司在甲电视台和乙电视台做广告的时间分别为x分钟和y分钟,总收益为z元, 由题意得 目标函数为z=3 000x+2 000y. 二元一次不等式组等价于 作出二元一次不等式组所表示的平面区域,即可行域,如图所示. 作直线l:3 000x+2 000y=0,即3x+2y=0. 平移直线l,从图中可知,当直线l过点M时,目标函数取得最大值. 由方程解得x=100,y=200. 所以点M的坐标为(100,200). 所以zmax=3 000x+2 000y=700 000(元). 答 该公司在甲电视台做100分钟广告,在乙电视台做200分钟广告,公司的收益最大,最大收益是70万元. 变式迁移3 B [ 设甲车间加工原料x箱,乙车间加工原料y箱, 由题意可知 甲、乙两车间每天总获利为z=280x+200y. 画出可行域如图所示. 点M(15,55)为直线x+y=70和直线10x+6y=480的交点,由图象知在点M(15,55)处z取得最大值.] 课后练习区 1.C 2.B 3.C 4.B 5.C 6.(1,3] 7. 解析 由 ⇒A(1,6), ⇒B, ∴kOA=6,kOB=. ∴k∈,即∈. 8. 解析  作可行域,如图. 由于函数y=k(x+1)+1的图象是过点P(-1,1),且斜率为k的直线l,由图知,当直线l过点A(1,2)时,k取最大值,当直线l过点B(3,0)时,k取最小值-,故k∈. 9.解 设该儿童分别预订x,y个单位的午餐和晚餐,共花费z元,则z=2.5x+4y.(2分) 可行域为 即(6分) 作出可行域如图所示: (9分) 经试验发觉,当x=4,y=3时,花费最少,为2.5×4+4×3=22(元).故应当为儿童分别预订4个单位的午餐和3个单位的晚餐.(12分) 10.解  作出可行域如图所示,并求出顶点的坐标A(1,3)、B(3,1)、C(7,9). (1)易知可行域内各点均在直线x+2y-4=0的上方,故x+2y-4>0,将点C(7,9)代入z得最大值为21.(4分) (2)z=x2+y2-10y+25=x2+(y-5)2表示可行域内任一点(x,y)到定点M(0,5)的距离的平方,过M作直线AC的垂线,易知垂足N在线段AC上, 故z的最小值是|MN|2=.(8分) (3)z=2×表示可行域内任一点(x,y)与定点Q连线的斜率的两倍, 因此kQA=,kQB=, 故z的范围为.(12分) 11.解 设桌子、椅子分别买x张、y把, 目标函数z=x+y,(2分) 把所给的条件表示成不等式组, 即约束条件为(6分) 由 解得 所以A点的坐标为. 由 解得 所以B点的坐标为.(9分) 所以满足条件的可行域是以A、B、 O(0,0)为顶点的三角形区域(如图).(12分) 由图形可知,目标函数z=x+y在可行域内的最优解为 B,但留意到x∈N*,y∈N*,故取 故买桌子25张,椅子37把是最好的选择.(14分)
    展开阅读全文
    提示  咨信网温馨提示:
    1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
    5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

    开通VIP折扣优惠下载文档

    自信AI创作助手
    关于本文
    本文标题:2021高考数学(福建-理)一轮学案35-简单的线性规划问题.docx
    链接地址:https://www.zixin.com.cn/doc/3825535.html
    页脚通栏广告

    Copyright ©2010-2026   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:0574-28810668    微信客服:咨信网客服    投诉电话:18658249818   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   


    关注我们 :微信公众号  抖音  微博  LOFTER               

    自信网络  |  ZixinNetwork