《高考导航》2022届新课标数学(理)一轮复习讲义-第七章-第3讲-空间点、直线、平面之间的位置关系.docx
《《高考导航》2022届新课标数学(理)一轮复习讲义-第七章-第3讲-空间点、直线、平面之间的位置关系.docx》由会员分享,可在线阅读,更多相关《《高考导航》2022届新课标数学(理)一轮复习讲义-第七章-第3讲-空间点、直线、平面之间的位置关系.docx(6页珍藏版)》请在咨信网上搜索。
1、第3讲空间点、直线、平面之间的位置关系1四个公理公理1:假如一条直线上的两点在一个平面内,那么这条直线在此平面内公理2:过不在一条直线上的三点,有且只有一个平面公理3:假如两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线公理4:平行于同一条直线的两条直线相互平行2空间直线的位置关系(1)位置关系的分类:(2)异面直线所成的角:定义:设a,b是两条异面直线,经过空间中任一点O作直线aa,bb,把a与b所成的锐角(或直角)叫做异面直线a与b所成的角(或夹角)范围:(3)定理:空间中假如两个角的两边分别对应平行,那么这两个角相等或互补3空间直线与平面,平面与平面之间的位置关系图形语
2、言符号语言公共点直线与平面相交aA1个平行a0个在平面内a很多个平面与平面平行0个相交l很多个做一做1已知A,B,C表示不同的点,l表示直线,表示不同的平面,则下列推理错误的是()AAl,A,Bl,BlBA,A,B,BABCl,AlADA,Al,llA答案:C2若直线ab,bcA,则直线a与c的位置关系是()A异面B相交C平行 D异面或相交答案:D1辨明三个易误点(1)正确理解异面直线“不同在任何一个平面内”的含义,不要理解成“不在同一个平面内”(2)不共线的三点确定一个平面,确定不能丢掉“不共线”的条件(3)两条异面直线所成角的范围是(0,902证明共面问题的两种途径(1)首先由条件中的部分
3、线(或点)确定一个平面,再证其他线(或点)在此平面内;(2)将全部条件分为两部分,然后分别确定平面,再证明这两个平面重合3证明共线问题的两种途径(1)先由两点确定一条直线,再证其他点都在这条直线上;(2)直接证明这些点都在同一条特定直线上做一做3下列命题正确的个数为()经过三点确定一个平面梯形可以确定一个平面两两相交的三条直线最多可以确定三个平面假如两个平面有三个公共点,则这两个平面重合A0B1C2 D3解析:选C.经过不共线的三点可以确定一个平面,不正确;两条平行线可以确定一个平面,正确;两两相交的三条直线可以确定一个或三个平面,正确;命题中没有说清三个点是否共线,不正确4如图是正方体或四周
4、体,P,Q,R,S分别是所在棱的中点,则这四个点不共面的一个图是()解析:选D.A,B,C图中四点确定共面,D中四点不共面_平面的基本性质_如图所示,正方体ABCDA1B1C1D1中,E、F分别是AB和AA1的中点求证: (1)E、C、D1、F四点共面;(2)CE、D1F、DA三线共点证明(1)连接EF,CD1,A1B.E、F分别是AB、AA1的中点,EFBA1,又A1BD1C,EFCD1,E、C、D1、F四点共面 (2)EFCD1,EFCD1,CE与D1F必相交,设交点为P,则由PCE,CE平面ABCD,得P平面ABCD.同理P平面ADD1A1.又平面ABCD平面ADD1A1DA,P直线DA
5、.CE、D1F、DA三线共点规律方法(1)证明四点共面的基本思路:一是直接证明,即利用公理或推论来直接证明;二是先由其中不共线的三点确定一个平面,再证第四个点也在这个平面内即可(2)要证明点共线或线共点的问题,关键是转化为证明点在直线上,也就是利用公理3,即证点在两个平面的交线上或者选择其中两点确定始终线,然后证明另一点也在直线上1. 如图,空间四边形ABCD中,E,F分别是AB,AD的中点,G,H分别在BC,CD上,且BGGCDHHC12. (1)求证:E,F,G,H四点共面;(2)设EG与FH交于点P,求证:P,A,C三点共线证明:(1)E,F分别为AB,AD的中点,EFBD.在BCD中,
6、GHBD,EFGH.E,F,G,H四点共面(2)EGFHP,PEG,EG平面ABC,P平面ABC.同理P平面ADC.P为平面ABC与平面ADC的公共点又平面ABC平面ADCAC,PAC,P,A,C三点共线_空间两直线的位置关系_如图所示,正方体ABCDA1B1C1D1中,M,N分别是A1B1,B1C1的中点问: (1)AM和CN是否是异面直线?说明理由;(2)D1B和CC1是否是异面直线?说明理由解(1)不是异面直线理由:连接MN,A1C1,AC.由于M,N分别是A1B1,B1C1的中点,所以MNA1C1.又由于A1A綊C1C,所以A1ACC1为平行四边形,所以A1C1AC,所以MNAC,所以
7、A,M,N,C在同一平面内,故AM和CN不是异面直线 (2)是异面直线理由如下:由于ABCDA1B1C1D1是正方体,所以B,C,C1,D1不共面假设D1B与CC1不是异面直线,则存在平面,使D1B平面,CC1平面,所以D1,B,C,C1,这与B,C,C1,D1不共面冲突所以假设不成立,即D1B和CC1是异面直线规律方法异面直线的判定方法:(1)定义法:依据定义推断(较为困难)(2)定理法:过平面内一点与平面外一点的直线与平面内不经过该点的直线为异面直线(此结论可作为定理使用)(3)反证法:先假设两条直线不是异面直线,即两直线平行或相交,由假设的条件动身,经过严密的推理,导出冲突,从而否定假设
8、,确定两条直线异面2. 如图,正方体ABCDA1B1C1D1中,M,N分别为棱C1D1,C1C的中点,有以下四个结论:直线AM与CC1是相交直线;直线AM与BN是平行直线;直线BN与MB1是异面直线;直线AM与DD1是异面直线其中正确的结论为_(注:把你认为正确的结论的序号都填上)解析:直线AM与CC1是异面直线,直线AM与BN也是异面直线,故错误答案:_异面直线所成的角(高频考点)_从近几年的高考试题来看,异面直线所成的角是高考的热点,题型既有选择题又有填空题,也有解答题,难度为中低档题;高考对异面直线所成的角的考查主要有以下两个命题角度:(1)求异面直线所成角;(2)由异面直线所成角求其他
9、量在正方体ABCDA1B1C1D1中,(1)求AC与A1D所成角的大小;(2)若E,F分别为AB,AD的中点,求A1C1与EF所成角的大小解(1)如图所示,连接B1C,AB1,由ABCDA1B1C1D1是正方体,易知A1DB1C,从而B1C与AC所成的角就是AC与A1D所成的角AB1ACB1C,B1CA60.即A1D与AC所成的角为60.(2)连接BD,在正方体ABCDA1B1C1D1中,ACBD,ACA1C1.E,F分别为AB,AD的中点,EFBD,EFAC.EFA1C1.即A1C1与EF所成的角为90.若本例中“正方体”改为“正四棱柱”且异面直线A1B与AD1所成角的余弦值为,试求:的值解
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考导航 高考 导航 2022 新课 数学 一轮 复习 讲义 第七 空间 直线 平面 之间 位置 关系
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
链接地址:https://www.zixin.com.cn/doc/3824711.html