《走向高考》2021届高三二轮复习数学(人教A版)课时作业-专题2-三角函数与平面向量-第3讲.docx
《《走向高考》2021届高三二轮复习数学(人教A版)课时作业-专题2-三角函数与平面向量-第3讲.docx》由会员分享,可在线阅读,更多相关《《走向高考》2021届高三二轮复习数学(人教A版)课时作业-专题2-三角函数与平面向量-第3讲.docx(5页珍藏版)》请在咨信网上搜索。
专题二 第三讲 一、选择题 1.(2022·新课标Ⅱ理,3)设向量a、b满足|a+b|=,|a-b|=,则a·b=( ) A.1 B.2 C.3 D.5 [答案] A [解析] 本题考查平面对量的模,平面对量的数量积. ∵|a+b|=,|a-b|=,∴a2+b2+2ab=10,a2+b2-2ab=6. 联立方程解得ab=1,故选A. 2.设x∈R,向量a=(x,1),b=(1,-2),且a⊥b,则|a+b|=( ) A. B. C.2 D.10 [答案] B [解析] 本题考查向量的模及垂直问题. ∵a⊥b,∴a·b=0,∴x-2=0,∴x=2, ∴a+b=(3,-1),|a+b|=. 3.(2022·福建理,8)在下列向量组中,可以把向量a=(3,2)表示出来的是( ) A.e1=(0,0),e2=(1,2) B.e1=(-1,2),e2=(5,-2) C.e1=(3,5),e2=(6,10) D.e1=(2,-3),e2=(-2,3) [答案] B [解析] 一个平面内任意不共线的两个向量都可以作为平面的基底,它能表示出平面内的其它向量.A中,e1=0,且e2与a不共线;C、D中的两个向量都是共线向量且不与a共线,故表示不出a.B中的两个向量不共线,可以作为平面的一组基底,故可表示出a, 4.(文)假如不共线向量a、b满足2|a|=|b|,那么向量2a+b与2a-b的夹角为( ) A. B. C. D. [答案] C [解析] ∵(2a+b)·(2a-b)=4|a|2-|b|2=0, ∴(2a+b)⊥(2a-b),∴选C. (理)若两个非零向量a、b满足|a+b|=|a-b|=2|a|,则向量a+b与a-b的夹角是( ) A. B. C. D. [答案] C [解析] 解法1:由条件可知,a·b=0,|b|=|a|,则cosθ==-⇒θ=. 解法2:由向量运算的几何意义,作图可求得a+b与a-b的夹角为. 5.(2022·新课标Ⅰ文,6)设D,E,F分别为△ABC的三边BC、CA、AB的中点,则+=( ) A. B. C. D. [答案] A [解析] 如图, + =-(+)-(+) =-(+)=(+) =. 选A. 6.若a、b、c均为单位向量,且a·b=0,(a-c)·(b-c)≤0,则|a+b-c|的最大值为( ) A.-1 B.1 C. D.2 [答案] B [解析] |a+b-c|2=|a|2+|b|2+|c|2+2a·b-2a·c-2b·c=3-2(a·c+b·c) (a-c)·(b-c)=a·b-a·c-b·c+|c|2 =1-(a·c+b·c)≤0, ∴|a+b-c|2≤1,∴|a+b-c|max=1. 二、填空题 7.(文)(2022·湖北文,12)若向量=(1,-3),||=||,·=0,则||=________. [答案] 2 [解析] ||=||,·=0⇒△AOB是直角边为||=的等腰直角三角形,AB是斜边,所以||=2.解向量试题有代数和几何两种思路,若能利用向量的几何意义,则可以避开简洁的代数运算. (理)(2022·江西理,14)已知单位向量e1与e2的夹角为α,且cosα=,向量a=3e1-2e2与b=3e1-e2的夹角为β,则cosβ=________. [答案] [解析] 本题考查平面对量数量积的性质及运算. 依题意e1·e2=|e1||e2|cosα=,∴|a|2=9e-12e1·e2+4e=9,∴|a|=3, |b|2=9e-6e1·e2+e=8,a·b=9e-9e1·e2+2e=8,∴|b|=2, cosβ===. 8.(2021·重庆文,14)若OA为边,OB为对角线的矩形中,=(-3,1),=(-2,k),则实数k=________. [答案] 4 [解析] 本题考查向量的数量积及坐标运算. ∵=(-3,1),=(-2,k),∴=-=(1,k-1). 由题意知⊥,∴·=0即(-3,1)·(1,k-1)=0. ∴-3+k-1=0,∴k=4. 9.已知向量a=(1,0),b=(1,1),则 (1)与2a+b同向的单位向量的坐标表示为________; (2)向量b-3a与向量a夹角的余弦值为________. [答案] (1)(,) (2)- [解析] 本题主要考查了向量的坐标运算,单位向量及夹角的求法.(1)2a+b=2(1,0)+(1,1)=(3,1),其单位向量为(,), (2)∵b-3a=(-2,1),|a|=1,|b-3a|=,a·(b-3a)=-2,∴cos〈a,b-3a〉==-. 10.如图所示,A、B、C是圆O上的三点,线段CO的延长线与线段BA的延长线交于圆O外的点D,若=m+n,则m+n的取值范围是________. [答案] (-1,0) [解析] 依据题意知,线段CO的延长线与线段BA的延长线的交点为D,则=t. ∵D在圆外,∴t<-1, 又D、A、B共线,∴存在λ、μ,使得=λ+μ,且λ+μ=1,又由已知,=m+n, ∴tm+tn=λ+μ, ∴m+n=,故m+n∈(-1,0). 一、选择题 11.设向量a,b满足|a|=2,a·b=,|a+b|=2,则|b|等于( ) A. B.1 C. D.2 [答案] B [解析] ∵|a+b|2=|a|2+2a·b+|b|2=4+3+|b|2=8,∴|b|=1. 12.(文)已知平面上不共线的四点O,A,B,C.若+2=3,则的值为( ) A. B. C. D. [答案] A [解析] 如图,设=2,作▱OAED,则=3, ∴||=||=2||,∴=. (理)(2022·新课标Ⅰ理,10)已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若=4,则|QF|=( ) A. B. C.3 D.2 [答案] C [解析] 抛物线的焦点坐标是F(2,0),过点Q作抛物线的准线的垂线,垂足是A,则|QA|=|QF|,抛物线的准线与x轴的交点为G,由于=4,∴=,由于三角形QAP与三角形FGP相像,所以可得==,所以|QA|=3,所以|QF|=3. 13.(文)(2022·中原名校其次次联考)在三角形ABC中,∠A=60°,∠A的平分线交BC于D,AB=4,=+λ(λ∈R),则AD的长为( ) A.1 B. C.3 D.3 [答案] D [解析] 在AC上取E点,在AB上取F点,使=,=λ, ∵=+λ=+, ∴DE∥AB,DF∥AC,∴===3,∵AF+BF=AB=4,∴BF=1,AF=3,在△ADF中,AF=3,DF=3,∠DFA=120°,∴AD=3. (理)(2022·湖南文,10)在平面直角坐标系中,O为原点,A(-1,0),B(0,),C(3,0),动点D满足||=1,则|++|的取值范围是( ) A.[4,6] B.[-1,+1] C.[2,2] D.[-1,+1] [答案] D [解析] 考查了向量的坐标运算,圆的有关学问. 设D(x,y),则由||=1,得(x-3)2+y2=1, 而|++|=表示点D(x,y)到点(1,-)的距离,(x-3)2+y2=1表示以(3,0)为圆心,1为半径的圆,点(1,-)与点(3,0)的距离为,∴|++|的取值范围为[-1,+1]. 14.(2022·浙江理,8)记max{x,y}=,min{x,y}=,设a,b为平面对量,则( ) A.min{|a+b|,|a-b|}≤min{|a|,|b|} B.min{|a+b|,|a-b|}≥min{|a|,|b|} C.max{|a+b|2,|a-b|2}≤|a|2+|b|2 D.max{|a+b|2,|a-b|2}≥|a|2+|b|2 [答案] D [解析] 由新定义知,max{x,y}是x与y中的较大值,min{x,y}是x,y中的较小值,据此可知A、B是比较|a+b|与|a-b|中的较小值与|a|与|b|中的较小值的大小,由平行四边形法则知其大小与〈a,b〉有关,故A、B错; 当〈a,b〉为锐角时,|a+b|>|a-b|,此时|a+b|2>|a|2+|b|2. 当〈a,b〉为钝角时,|a+b|<|a-b|,此时|a+b|2<|a|2+|b|2<|a-b|2. 当〈a,b〉=90°时,|a+b|=|a-b|,此时|a+b|2=|a|2+|b|2. 故选D. 二、填空题 15.(2022·山东理,12)在△ABC中,已知·=tanA,当A=时,△ABC的面积为________. [答案] [解析] ·=||||cos=tan ∴||||= S△ABC=||||sin=××=. 16.(文)(2021·苏北四市一调)如图,在四边形ABCD中,AC和BD相交于点O,设=a,=b,若=2,则=________(用向量a和b表示). [答案] a+b [解析] 据题意可得=+=+=a+b,又由=2,可得==(a+b)=a+b (理)(2021·南昌高三调研)已知O为坐标原点,点M(3,2),若N(x,y)满足不等式组则·的最大值为________. [答案] 12 [解析] 据不等式组得可行域如图所示: 由于z=·=3x+2y,结合图形进行平移可得点A(4,0)为目标函数取得最大值的最优解.即zmax=3×4+2×0=12. 三、解答题 17.已知向量a=(cosθ,sinθ),θ∈[0,π],向量b=(,-1). (1)若a⊥b,求θ的值; (2)若|2a-b|<m恒成立,求实数m的取值范围. [解析] (1)∵a⊥b, ∴cosθ-sinθ=0,得tanθ=. 又θ∈[0,π],∴θ=. (2)∵2a-b=(2cosθ-,2sinθ+1), ∴|2a-b|2=(2cosθ-)2+(2sinθ+1)2 =8+8(sinθ-cosθ)=8+8sin(θ-). 又θ∈[0,π],∴θ-∈[-,], ∴sin(θ-)∈[-,1], ∴|2a-b|2的最大值为16,∴|2a-b|的最大值为4. 又|2a-b|<m恒成立,∴m>4. 18.在△ABC中,角A、B、C所对的对边长分别为a、b、c. (1)设向量x=(sinB,sinC),向量y=(cosB,cosC),向量z=(cosB,-cosC),若z∥(x+y),求tanB+tanC的值; (2)若sinAcosC+3cosAsinC=0,证明:a2-c2=2b2. [解析] (1)x+y=(sinB+cosB,sinC+cosC), ∵z∥(x+y), ∴cosB(sinC+cosC)+cosC(sinB+cosB)=0, 整理得tanC+tanB+2=0, ∴tanC+tanB=-2. (2)证明:∵sinAcosC+3cosAsinC=0, ∴由正、余弦定理得:a·+3××c=0, ∴a2-c2=2b2.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 走向高考 走向 高考 2021 届高三 二轮 复习 数学 人教 课时 作业 专题 三角函数 平面 向量
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文
本文标题:《走向高考》2021届高三二轮复习数学(人教A版)课时作业-专题2-三角函数与平面向量-第3讲.docx
链接地址:https://www.zixin.com.cn/doc/3824314.html
链接地址:https://www.zixin.com.cn/doc/3824314.html