【-学案导学设计】2020-2021学年高中数学(北师大版-必修4)课时作业2.6第二章-平面向量.docx
《【-学案导学设计】2020-2021学年高中数学(北师大版-必修4)课时作业2.6第二章-平面向量.docx》由会员分享,可在线阅读,更多相关《【-学案导学设计】2020-2021学年高中数学(北师大版-必修4)课时作业2.6第二章-平面向量.docx(3页珍藏版)》请在咨信网上搜索。
§6 平面对量数量积的坐标表示 课时目标 1.把握数量积的坐标表示, 会进行平面对量数量积的坐标运算.2.能运用数量积的坐标表示求两个向量的夹角,会用数量积的坐标表示推断两个平面对量的垂直关系,会用数量的坐标表示求向量的模. 1.平面对量数量积的坐标表示 若a=(x1,y1),b=(x2,y2),则a·b=__________________. 即两个向量的数量积等于______________________. 2.两个向量垂直的坐标表示 设两个非零向量a=(x1,y1),b=(x2,y2), 则a⊥b⇔____________________. 3.平面对量的模 (1)向量模公式:设a=(x1,y1),则|a|=__________________. (2)两点间距离公式:若A(x1,y1),B(x2,y2), 则||=________________________. 4.向量的夹角公式 设两非零向量a=(x1,y1),b=(x2,y2),a与b的夹角为θ,则cos θ=____________________=______________________________________________________. 一、选择题 1.已知向量a=(1,n),b=(-1,n),若2a-b与b垂直,则|a|等于( ) A.1 B. C.2 D.4 2.平面对量a与b的夹角为60°,a=(2,0),|b|=1,则|a+2b|等于( ) A. B.2 C.4 D.12 3.已知a,b为平面对量,a=(4,3),2a+b=(3,18),则a,b夹角的余弦值等于( ) A. B.- C. D.- 4.已知向量a=(1,2),b=(2,-3).若向量c满足(c+a)∥b,c⊥(a+b),则c等于( ) A. B. C. D. 5.已知向量a=(2,1),a·b=10,|a+b|=5,则|b|等于( ) A. B. C.5 D.25 6.已知a=(-3,2),b=(-1,0),向量λa+b与a-2b垂直,则实数λ的值为( ) A.- B. C.- D. 二、填空题 7.已知a=(3,),b=(1,0),则(a-2b)·b=_______________________________. 8.若平面对量a=(1,-2)与b的夹角是180°,且|b|=4,则b=________. 9.若a=(2,3),b=(-4,7),则a在b方向上的射影为______. 10.已知a=(-2,-1),b=(λ,1),若a与b的夹角α为钝角,则λ的取值范围为________. 三、解答题 11.已知a与b同向,b=(1,2),a·b=10. (1)求a的坐标; (2)若c=(2,-1),求a(b·c)及(a·b)c. 12.已知三个点A(2,1),B(3,2),D(-1,4), (1)求证:AB⊥AD; (2)要使四边形ABCD为矩形,求点C的坐标并求矩形ABCD两对角线所成的锐角的余弦值. 力气提升 13.已知向量a=(1,1),b=(1,a),其中a为实数,O为原点,当此两向量夹角在变动时,a的范围是( ) A.(0,1) B. C.∪(1,) D.(1,) 14.若等边△ABC的边长为2,平面内一点M满足=+,则·= ________. 1.向量的坐标表示简化了向量数量积的运算.为利用向量法解决平面几何问题以及解析几何问题供应了完善的理论依据和有力的工具支持. 2.应用数量积运算可以解决两向量的垂直、平行、夹角以及长度等几何问题,在学习中要不断地提高利用向量工具解决数学问题的力气. §6 平面对量数量积的坐标表示 答案 学问梳理 1.x1x2+y1y2 相应坐标乘积的和 2.x1x2+y1y2=0 3.(1) (2) 4. 作业设计 1.C [由(2a-b)·b=0,则2a·b-|b|2=0, ∴2(n2-1)-(1+n2)=0,n2=3. ∴|a|==2.] 2.B [a=(2,0),|b|=1, ∴|a|=2,a·b=2×1×cos 60°=1. ∴|a+2b|==2.] 3.C [∵a=(4,3),∴2a=(8,6).又2a+b=(3,18),∴b=(-5,12), ∴a·b=-20+36=16. 又|a|=5,|b|=13, ∴cos〈a,b〉==.] 4.D [设c=(x,y), 由(c+a)∥b有-3(x+1)-2(y+2)=0,① 由c⊥(a+b)有3x-y=0,② 联立①②有x=-,y=-,则c=(-,-).] 5.C [∵|a+b|=5, ∴|a+b|2=a2+2a·b+b2 =5+2×10+b2=(5)2, ∴|b|=5.] 6.A [由a=(-3,2),b=(-1,0), 知λa+b=(-3λ-1,2λ),a-2b=(-1,2). 又(λa+b)·(a-2b)=0, ∴3λ+1+4λ=0,∴λ=-.] 7.1 解析 a-2b=(1,), (a-2b)·b=1×1+×0=1. 8.(-4,8) 解析 由题意可设b=λa=(λ,-2λ),λ<0, 则|b|2=λ2+4λ2=5λ2=80,∴λ=-4,∴b=-4a=(-4,8). 9. 解析 设a、b的夹角为θ, 则cos θ==, 故a在b方向上的射影为|a|cos θ=×=. 10.∪(2,+∞) 解析 由题意cos α==, ∵90°<α<180°,∴-1<cos α<0, ∴-1<<0,∴ 即 即 ∴λ的取值范围是∪(2,+∞). 11.解 (1)设a=λb=(λ,2λ) (λ>0),则有a·b=λ+4λ=10, ∴λ=2,∴a=(2,4). (2)∵b·c=1×2-2×1=0,a·b=1×2+2×4=10, ∴a(b·c)=0a=0, (a·b)c=10×(2,-1)=(20,-10). 12.(1)证明 ∵A(2,1),B(3,2),D(-1,4), ∴=(1,1),=(-3,3), 又∵·=1×(-3)+1×3=0, ∴⊥,即AB⊥AD. (2)解 ⊥,四边形ABCD为矩形, ∴=. 设C点坐标为(x,y),则=(1,1),=(x+1,y-4), ∴ 得 ∴C点坐标为(0,5). 由于=(-2,4),=(-4,2), 所以·=8+8=16, ||=2 ,||=2 . 设与夹角为θ,则 cos θ===>0, ∴解得矩形的两条对角线所成的锐角的余弦值为. 13.C [已知=(1,1),即A(1,1)如图所示,当点B位于B1和B2时,a与b夹角为,即∠AOB1=∠AOB2=,此时,∠B1Ox=-=,∠B2Ox=+=, 故B1,B2(1,),又a与b夹角不为零, 故a≠1,由图易知a的范围是∪(1,).] 14.-2 解析 建立如图所示的直角坐标系,依据题设条件即可知A(0,3),B(-,0),M(0,2), ∴=(0,1), =(-,-2). ∴·=-2.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- -学案导学设计 学案导学 设计 2020 2021 学年 高中数学 北师大 必修 课时 作业 2.6 第二 平面 向量
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文
本文标题:【-学案导学设计】2020-2021学年高中数学(北师大版-必修4)课时作业2.6第二章-平面向量.docx
链接地址:https://www.zixin.com.cn/doc/3822915.html
链接地址:https://www.zixin.com.cn/doc/3822915.html