高中数学(北师大版)选修1-1教案:第3章-典型例题:导数的几何意义.docx
《高中数学(北师大版)选修1-1教案:第3章-典型例题:导数的几何意义.docx》由会员分享,可在线阅读,更多相关《高中数学(北师大版)选修1-1教案:第3章-典型例题:导数的几何意义.docx(3页珍藏版)》请在咨信网上搜索。
3.2 导数的几何意义 【例1】曲线f(x)=x3+2x+1在点M处的切线的斜率为2,求M的坐标 【例2】由原点O向三次曲线y=x3-3ax2+bx(a≠0)引切线,切于不同于O的点P1(x1,y1).再由P1引曲线的切线,切于不同于P1的点P2(x2,y2),…,如此连续地作下去,得到点列{Pn(xn,yn)},试回答下列问题: (1)求x1; (2)求xn与xn+1的关系; (3)当a>0时,求证:当n为正偶数时有xn<a,当n为正奇数时有xn>a. 参考答案 例1: 【分析】求f(x)的导数f′(x),依据斜率为2,先求出M的横坐标,再代入到f(x)中得到纵坐标. 【解】∵f(x)=x3+2x+1, ∴ =3x2+2. ∴f′(x)=3x2+2=2,x=0. 又f(0)=1, ∴M的坐标为(0,1) 【点拨】先依据导数公式求出点的横坐标,再将横坐标代入函数式子求出纵坐标. 例2: 【分析】过Pn(xn,yn)的切线的斜率kn=f′(xn),利用点斜式写出直线方程. 又由于点Pn+1(xn+1,yn+1)也在直线上,所以坐标满足方程. 于是建立xn与xn+1的递推关系.对于第(1)问,设P0(x0,y0)即为P0(0,0). 由于原点也在曲线上,于是应当满足递推关系,求出x1.利用递推数列的学问求解xn的通项公式,最终运用分类思想赐予证明. 【解】(1)原点(0,0), kn=f′(xn), ∵f(x)=x3-3ax2+bx,∴f′(x)=3x2-6ax+b, f′(xn)=3xn2-6axn+b. ∴k1=f′(x1)=3x12-6ax1+b. ∴过P1的切线l1的方程为y-f(x1)=f′(x1)(x-x1). ∵l1过点O(0,0), ∴-f(x1)=f′(x1)(0-x1). ∴x13-3ax12+bx1=(3x12-6ax1+b)x1. 又∵x1≠0, ∴x12-3ax1+b=3x12-6ax1+b. ∴2x12-3ax1=0.又x1≠0,∴. (2)过Pn的切线ln的方程为 y-f(xn)=f′(xn)(x-xn), 又∵ln过点Pn-1(xn-1,yn-1), ∴f(xn-1)-f(xn)=f′(xn)(xn-1-xn). ∴xn-13-3axn-12+bxn-1-xn3+3axn2-bxn=(3xn2-6axn+b)(xn-1-xn). ∴(xn-13-xn3)-3a(xn-12-xn2)+b(xn-1-xn)=(3xn2-6axn+b)(xn-1-xn). 又∵xn-1≠xn, ∴xn-12+xnxn-1+xn2-3a(xn+xn-1)+b=3xn2-6axn+b, ∴xn-12+xnxn-1-2xn2+3a(xn-xn-1)=0. ∴(xn-1-xn)(xn-1+2xn)-3a(xn-1-xn)=0. ∴xn-1+2xn-3a=0, 即. 同理. (3), ∴xn+1-a=-(xn-a). ∴数列{xn-a}是等比数列,且公比为-,首项为a. ∴xn-a=a·(-)n-1. ∴xn=a-a·(-)n. 当n为正偶数时,xn=a-a·()n<a; 当n为正奇数时,xn=a+a·()n>a. 【点拨】本题考查的学问点较多,需要在以前学习的学问的基础上解决.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 优教通-同步备课 优教通 同步 备课 高中数学 北师大 选修 教案 典型 例题 导数 几何 意义
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文