2022届高三数学一轮总复习基础练习:第八章-平面解析几何8-1-.docx
《2022届高三数学一轮总复习基础练习:第八章-平面解析几何8-1-.docx》由会员分享,可在线阅读,更多相关《2022届高三数学一轮总复习基础练习:第八章-平面解析几何8-1-.docx(4页珍藏版)》请在咨信网上搜索。
第一节 直线的倾斜角与斜率、直线的方程 时间:45分钟 分值:100分 一、选择题 1.直线l:xsin30°+ycos150°+1=0的斜率是( ) A. B. C.- D.- 解析 设直线l的斜率为k,则k=-=. 答案 A 2.若直线l与直线y=1,x=7分别交于点P,Q,且线段PQ的中点坐标为(1,-1),则直线l的斜率为( ) A. B.- C.- D. 解析 设P(xP,1),由题意及中点坐标公式得xP+7=2,解得xP=-5,即P(-5,1),所以k=-. 答案 B 3.直线ax+by+c=0同时要经过第一、其次、第四象限,则a,b,c应满足( ) A.ab>0,bc<0 B.ab>0,bc>0 C.ab<0,bc>0 D.ab<0,bc<0 解析 由于直线ax+by+c=0经过第一、二、四象限,所以直线存在斜率,将方程变形为y=-x-.易知-<0且->0,故ab>0,bc<0. 答案 A 4.(2022·浙江台州第三次统练)直线(a-1)x+y-a-3=0(a>1),当此直线在x,y轴的截距和最小时,实数a的值是( ) A.1 B. C.2 D.3 解析 当x=0时,y=a+3,当y=0时,x=,令t=a+3+=5+(a-1)+. ∵a>1,∴a-1>0.∴t≥5+2 =9. 当且仅当a-1=,即a=3时,等号成立. 答案 D 5.平行四边形ABCD的一条对角线固定在A(3,-1),C(2,-3)两点,D点在直线3x-y+1=0上移动,则B点的轨迹方程为( ) A.3x-y-20=0 B.3x-y-10=0 C.3x-y-9=0 D.3x-y-12=0 解析 设AC的中点为O,则. 设B(x,y)关于点O的对称点为(x0,y0), 即D(x0,y0),则 由3x0-y0+1=0得3x-y-20=0. 答案 A 6.(2021·浙江质检)已知两点M(2,-3),N(-3,-2),直线l过点P(1,1)且与线段MN相交,则直线l的斜率k的取值范围是( ) A.k≥或k≤-4 B.-4≤k≤ C.≤k≤4 D.-≤k≤4 解析 如图所示,∵kPN==,kPM==-4,∴要使直线l与线段MN相交,当l的倾斜角小于90°时,k≥kPN;当l的倾斜角大于90°时,k≤kPM,由已知得k≥或k≤-4,故选A. 答案 A 二、填空题 7.过点P(-1,2),且在x轴上的截距是在y轴上的截距的2倍的直线方程是________. 解析 当直线过原点时,方程为y=-2x;当直线不经过原点时,设方程为+=1,把P(-1,2)代入上式,得a=,所以方程为x+2y-3=0. 答案 y=-2x或x+2y-3=0 8.直线2x+my=1的倾斜角为α,若m∈(-∞,-2)∪[2,+∞),则α的取值范围是________. 解析 依题意tanα=-,由于m∈(-∞,-2)∪[2,+∞),所以0<tanα<或-1≤tanα<0,所以α∈∪. 答案 ∪ 9.已知A(3,5),B(4,7),C(-1,x)三点共线,则x=________. 解析 由于kAB==2,kAC==-. A,B,C三点共线,所以kAB=kAC,即-=2, 解得x=-3. 答案 -3 三、解答题 10.已知直线l与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线l的方程: (1)过定点A(-3,4); (2)斜率为. 解 (1)设直线l的方程为y=k(x+3)+4,它在x轴,y轴上的截距分别是--3,3k+4, 由已知,得(3k+4)=±6, 解得k1=-或k2=-. 故直线l的方程为2x+3y-6=0或8x+3y+12=0. (2)设直线l在y轴上的截距为b,则直线l的方程是y=x+b,它在x轴上的截距是-6b, 由已知,得|-6b·b|=6,∴b=±1. ∴直线l的方程为x-6y+6=0或x-6y-6=0. 11.已知△ABC中,A(1,-4),B(6,6),C(-2,0).求: (1)△ABC的平行于BC边的中位线的一般式方程和截距式方程; (2)BC边的中线的一般式方程,并化为截距式方程. 解 (1)平行于BC边的中位线就是AB、AC中点的连线. 由于线段AB、AC中点坐标为,, 所以这条直线的方程为=, 整理得6x-8y-13=0, 化为截距式方程为+=1. (2)由于BC边上的中点为(2,3), 所以BC边上的中线方程为=, 即7x-y-11=0, 化为截距式方程为+=1. 1.已知点A(-1,0),B(cosα,sinα),且|AB|=,则直线AB的方程为( ) A.y=x+或y=-x- B.y=x+或y=-x- C.y=x+1或y=-x-1 D.y=x+或y=-x- 解析 |AB|===,所以cosα=,sinα=±,所以kAB=±,即直线AB的方程为y=±(x+1),所以直线AB的方程为y=x+或y=-x-. 答案 B 2.(2021·北京模拟)设m,n∈R,若直线l:mx+ny-1=0与x轴相交于点A,与y轴相交于点B,且坐标原点O到直线l的距离为,则△AOB的面积S的最小值为( ) A. B.2 C.3 D.4 解析 原点O到直线l的距离d===,∴m2+n2=,在直线l的方程中,令y=0可得x=,即直线l与x轴交于点A,令x=0可得y=,即直线l与y轴交于点B,∴S△AOB=|OA|·|OB|=··=≥=3,当且仅当|m|=|n|时上式取等号,由于m2+n2=,故当m2=n2=时,△AOB的面积取最小值3. 答案 C 3.将直线l1:x+y-3=0围着点P(1,2)按逆时针方向旋转45°后得到直线l2,则l2的方程为________. 解析 直线l1的倾斜角为135°,点P正好在直线l1上,因此旋转后得直线l2的倾斜角为0°,方程为y=2. 答案 y=2 4.已知直线l:kx-y+1+2k=0(k∈R). (1)证明:直线l过定点; (2)若直线l不经过第四象限,求k的取值范围; (3)若直线l交x轴负半轴于点A,交y轴正半轴于点B,O为坐标原点,设△AOB的面积为S,求S的最小值及此时直线l的方程. 解 (1)证明:方法一:直线l的方程可化为y=k(x+2)+1, 故无论k取何值,直线l总过定点(-2,1). 方法二:设直线l过定点(x0,y0),则kx0-y0+1+2k=0对任意k∈R恒成立,即(x0+2)k-y0+1=0恒成立,∴x0+2=0,-y0+1=0, 解得x0=-2,y0=1,故直线l总过定点(-2,1). (2)直线l的方程为y=kx+2k+1, 则直线l在y轴上的截距为2k+1, 要使直线l不经过第四象限,则 解得k的取值范围是[0,+∞). (3)依题意,直线l在x轴上的截距为-, 在y轴上的截距为1+2k,∴A,B(0,1+2k). 又-<0且1+2k>0,∴k>0. 故S=|OA||OB|=×(1+2k) =≥(4+4)=4, 当且仅当4k=,即k=时,取等号. 故S的最小值为4,此时直线l的方程为x-2y+4=0.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 名师一号 名师 一号 2022 届高三 数学 一轮 复习 基础 练习 第八 平面 解析几何
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文