分享
分销 收藏 举报 申诉 / 3
播放页_导航下方通栏广告

类型2021届高中数学人教版高考复习知能演练轻松闯关-第八章第6课时.docx

  • 上传人:精****
  • 文档编号:3822571
  • 上传时间:2024-07-21
  • 格式:DOCX
  • 页数:3
  • 大小:98.12KB
  • 下载积分:5 金币
  • 播放页_非在线预览资源立即下载上方广告
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    优化方案 优化 方案 2021 高中 学人 高考 复习 知能 演练 轻松 闯关 第八 课时
    资源描述:
    [基础达标] 1.(2021·高考湖北卷)已知0<θ<,则双曲线C1:-=1与C2:-=1的(  ) A.实轴长相等 B.虚轴长相等 C.离心率相等 D.焦距相等 解析:选D.由双曲线C1知:a2=sin2θ,b2=cos2θ⇒c2=1,由双曲线C2知:a2=cos2θ,b2=sin2θ⇒c2=1. 2.(2022·福建宁德一模)已知椭圆+=1(a>0)与双曲线-=1有相同的焦点,则a的值为(  ) A. B. C.4 D. 解析:选C.由于椭圆+=1(a>0)与双曲线-=1有相同的焦点(±,0),则有a2-9=7,∴a=4. 3.(2022·辽宁六校联考)已知点P(2,)是双曲线-=1(a>0,b>0)的渐近线上的一点,E,F分别是双曲线的左,右焦点,若·=0,则双曲线的方程为(  ) A.-=1 B.-=1 C.-=1 D.-=1 解析:选C.由条件易得=,且(2+c,)·(2-c,)=0,联立求得a2=4,b2=5. 4.设F1,F2分别是双曲线-=1(a>0,b>0)的左,右焦点.若双曲线上存在点A,使∠F1AF2=90°,且|AF1|=3|AF2|,则双曲线的离心率等于(  ) A. B. C. D. 解析:选B.由⇒,由∠F1AF2=90°,得|AF1|2+|AF2|2=|F1F2|2,即(3a)2+a2=(2c)2,得e=. 5.(2022·山西阳泉调研)若双曲线-=1(a>0,b>0)的一个焦点到一条渐近线的距离等于焦距的,则该双曲线的渐近线方程是(  ) A.x±2y=0 B.2x±y=0 C.x±y=0 D.x±y=0 解析:选C.易知双曲线-=1(a>0,b>0)的一个焦点到一条渐近线的距离为b,而=,所以b=c,a==c,∴=,故该双曲线的渐近线方程是x±y=0. 6.(2021·高考天津卷)已知抛物线y2=8x的准线过双曲线-=1(a>0,b>0)的一个焦点,且双曲线的离心率为2,则该双曲线的方程为________. 解析:由题意可知抛物线的准线方程为x=-2,∴双曲线的半焦距c=2.又双曲线的离心率为2,∴a=1,b=,∴双曲线的方程为x2-=1. 答案:x2-=1 7.已知双曲线的中心在原点,一个顶点的坐标是(-3,0),且焦距与实轴长之比为5∶3,则双曲线的标准方程是________.  解析:可求得a=3,c=5.焦点的位置在x轴上,所得的方程为-=1. 答案:-=1 8.(2022·浙江杭州调研)双曲线-=1(a>0,b>0)的左、右焦点分别为F1和F2,左、右顶点分别为A1和A2,过焦点F2与x轴垂直的直线和双曲线的一个交点为P,若||是||和||的等比中项,则该双曲线的离心率为________. 解析:由题意可知||2=||×||,即+(a+c)2=2c(a+c),化简可得a2=b2,则e====. 答案: 9.已知双曲线关于两坐标轴对称,且与圆x2+y2=10相交于点P(3,-1),若此圆过点P的切线与双曲线的一条渐近线平行,求此双曲线的方程. 解:切点为P(3,-1)的圆x2+y2=10的切线方程是3x-y=10. ∵双曲线的一条渐近线与此切线平行,且双曲线关于两坐标轴对称, ∴两渐近线方程为3x±y=0. 设所求双曲线方程为9x2-y2=λ(λ≠0). ∵点P(3,-1)在双曲线上,代入上式可得λ=80, ∴所求的双曲线方程为-=1. 10.已知双曲线的中心在原点,焦点F1,F2在坐标轴上,离心率为,且过点(4,-).点M(3,m)在双曲线上. (1)求双曲线方程; (2)求证:·=0. 解:(1)∵e=, ∴可设双曲线方程为x2-y2=λ(λ≠0). ∵过点(4,-),∴16-10=λ,即λ=6. ∴双曲线方程为-=1. (2)证明:由(1)可知,双曲线中a=b=,∴c=2, ∴F1(-2,0),F2(2,0), ∴kMF1=,kMF2=, kMF1·kMF2==-. ∵点(3,m)在双曲线上,∴9-m2=6,m2=3, 故kMF1·kMF2=-1,∴MF1⊥MF2. ∴·=0. [力气提升] 1.(2022·安徽省“江南十校”联考)已知抛物线y2=2px(p>0)的焦点F恰好是双曲线-=1(a>0,b>0)的右焦点,且双曲线过点,则该双曲线的离心率是(  ) A.2 B. C. D. 解析:选D.由题意知=c,所以p=2c,双曲线过点,将点的坐标代入双曲线方程,得-=1,即9a2-4b2=4c2.又b2=c2-a2.所以9a2-4c2+4a2=4c2,即13a2=8c2,e==. 2.(2022·山西阳泉高三第一次诊断)已知F1、F2分别为双曲线C:x2-y2=1的左、右焦点,点P在双曲线C上,且∠F1PF2=60°,则|PF1|·|PF2|等于(  ) A.2 B.4 C.6 D.8 解析:选B.由题意知a=1,b=1,c=, ∴|F1F2|=2, 在△PF1F2中,由余弦定理得 |PF1|2+|PF2|2-2|PF1||PF2|cos 60° =|F1F2|2=8, 即|PF1|2+|PF2|2-|PF1||PF2|=8,① 由双曲线定义得||PF1|-|PF2||=2a=2,两边平方得 |PF1|2+|PF2|2-2|PF1||PF2|=4,② ①-②得|PF1||PF2|=4. 3.已知双曲线x2-=1的左顶点为A1,右焦点为F2,P为双曲线右支上一点,则·的最小值为________. 解析:由题可知A1(-1,0),F2(2,0),设P(x,y)(x≥1), 则=(-1-x,-y),=(2-x,-y), ·=(-1-x)(2-x)+y2=x2-x-2+y2 =x2-x-2+3(x2-1)=4x2-x-5. ∵x≥1,函数f(x)=4x2-x-5的图象的对称轴为x=, ∴当x=1时,·取得最小值-2. 答案:-2 4.(2021·高考湖南卷)设F1,F2是双曲线C:-=1 (a>0,b>0)的两个焦点.若在C上存在一点P,使PF1⊥PF2,且∠PF1F2=30°,则C的离心率为________. 解析: 设点P在双曲线右支上.∵PF1⊥PF2,|F1F2|=2c,且∠PF1F2=30°,∴|PF2|=c,|PF1|=C.又点P在双曲线右支上,∴|PF1|-|PF2|=(-1)c=2A.∴e===+1. 答案:+1 5.设A,B分别为双曲线-=1(a>0,b>0)的左,右顶点,双曲线的实轴长为4,焦点到渐近线的距离为. (1)求双曲线的方程; (2)已知直线y=x-2与双曲线的右支交于M、N两点,且在双曲线的右支上存在点D,使+=t,求t的值及点D的坐标. 解:(1)由题意知a=2, ∴一条渐近线为y= x. 即bx-2y=0. ∴=. ∴b2=3,∴双曲线的方程为-=1. (2)设M(x1,y1),N(x2,y2),D(x0,y0), 则x1+x2=tx0,y1+y2=ty0. 将直线方程代入双曲线方程得 x2-16x+84=0, 则x1+x2=16,y1+y2=12. ∴∴ ∴t=4,点D的坐标为(4,3). 6.(选做题)直线l:y=(x-2)和双曲线C:-=1(a>0,b>0)交于A,B两点,且|AB|=,又l关于直线l1:y=x对称的直线l2与x轴平行. (1)求双曲线C的离心率e; (2)求双曲线C的方程. 解:(1)设双曲线C:-=1过一、三象限的渐近线l1:-=0的倾斜角为α. 由于l和l2关于l1对称,记它们的交点为P,l与x轴的交点为M. 而l2与x轴平行,记l2与y轴的交点为Q. 依题意有∠QPO=∠POM=∠OPM=α. 又l:y=(x-2)的倾斜角为60°,则2α=60°, 所以tan 30°==. 于是e2==1+=1+=, 所以e=. (2)由于=,于是设双曲线方程为-=1(k≠0), 即x2-3y2=3k2. 将y=(x-2)代入x2-3y2=3k2中, 得x2-3×3(x-2)2=3k2. 化简得到8x2-36x+36+3k2=0. 设A(x1,y1),B(x2,y2), 则|AB|=|x1-x2|=2 =2==, 求得k2=1. 故所求双曲线方程为-y2=1.
    展开阅读全文
    提示  咨信网温馨提示:
    1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
    5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

    开通VIP折扣优惠下载文档

    自信AI创作助手
    关于本文
    本文标题:2021届高中数学人教版高考复习知能演练轻松闯关-第八章第6课时.docx
    链接地址:https://www.zixin.com.cn/doc/3822571.html
    页脚通栏广告

    Copyright ©2010-2026   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:0574-28810668    微信客服:咨信网客服    投诉电话:18658249818   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   


    关注我们 :微信公众号  抖音  微博  LOFTER               

    自信网络  |  ZixinNetwork