【2021届备考】2020全国名校数学试题分类解析汇编(12月第一期):B4函数的奇偶性与周期性.docx
《【2021届备考】2020全国名校数学试题分类解析汇编(12月第一期):B4函数的奇偶性与周期性.docx》由会员分享,可在线阅读,更多相关《【2021届备考】2020全国名校数学试题分类解析汇编(12月第一期):B4函数的奇偶性与周期性.docx(6页珍藏版)》请在咨信网上搜索。
1、B4 函数的奇偶性与周期性【数学理卷2021届辽宁省沈阳二中高三上学期期中考试(202211)】11若曲线f(x,y)0上两个不同点处的切线重合,则称这条切线为曲线f(x,y)0的“自公切线”下列方程:x2y21;yx2|x|;y3sin x4cos x;|x|1对应的曲线中存在“自公切线”的有 ( )A B C D【学问点】双曲线及其几何性质周期性B4 H6【答案解析】B x2-y2=1是一个等轴双曲线,没有自公切线;y=x2-|x|=,在x=和x=-处的切线都是y=-,故有自公切线y=3sinx+4cosx=5sin(x+),cos= ,sin=,此函数是周期函数,过图象的最高点的切线都重
2、合或过图象的最低点的切线都重合,故此函数有自公切线由于|x|+1=,即x2+2|x|+y2-3=0,结合图象可得,此曲线没有自公切线故答案为B【思路点拨】x2-y2=1是一个等轴双曲线,没有自公切线;在x=和x=-处的切线都是y=-,故有自公切线此函数是周期函数,过图象的最高点的切线都重合或过图象的最低点的切线都重合,故此函数有自公切线结合图象可得,此曲线没有自公切线【数学理卷2021届湖南省浏阳一中、攸县一中、醴陵一中三校高三联考(202211)】14、设f(x)是定义在R上的奇函数,且当x0时,f(x)=x2,若对任意xa,a+2,不等式f(x+a)f(3x+1)恒成立,则实数a的取值范围
3、是 【学问点】函数奇偶性、单调性的应用. B3 B4 【答案】【解析】 解析:由于当x0时,f(x)=,所以f(x)是的增函数,又f(x)是定义在R上的奇函数,所以f(x)是R上的增函数,所以若对任意xa,a+2,不等式f(x+a)f(3x+1)恒成立,即对任意xa,a+2,由于函数2x+1是a,a+2上的增函数,所以2x+1有最大值2a+5,所以.【思路点拨】先依据已知判定函数f(x)是R上的单调增函数,然后把命题转化为对任意xa,a+2,a 2x+1恒成立问题求解.【数学理卷2021届湖南省岳阳一中高三上学期第三次月考(202211)】2. 下列函数中,既是奇函数又存在极值的是( ) A.
4、 B. C. D.【学问点】利用导数争辩函数的极值;函数奇偶性的性质B12 B4【答案】【解析】D 解析:由题可知,B、C选项不是奇函数,A选项单调递增(无极值),而D选项既为奇函数又存在极值故选D.【思路点拨】依据奇函数、存在极值的条件,即可得出结论【数学理卷2021届江西省赣州市十二县(市)高三上学期期中联考(202211)】12.若函数且,若是偶函数,且在 内是减函数,则整数的值是_ 【学问点】函数奇偶性的性质.B4【答案】【解析】1或3 解析:由分段函数f(x)可得,b=f(f(f(0)=f(f(2)=f(1)=1,由于是偶函数,且在内是减函数,则a24a10,解得2a2+,由于a为整
5、数,则a=0,1,2,3,4检验:只有a=1,3时,函数y=x4为偶函数,故答案为:1或3【思路点拨】运用分段函数表达式,求得b=1,再由幂函数的单调性得到a24a10,解得a,再求整数a,检验函数的奇偶性,即可得到a【数学理卷2021届安徽省“江淮十校”高三11月联考(202211)WORD版】17.(本小题满分12分)已知函数为奇函数.(1)求的值;(2)若函数在区间上单调递增,求实数的取值范围.【学问点】函数的奇偶性和单调性 B3 B4【答案】【解析】(1) (2) 解析:(1)令,.,.(2) 在-1,1上递增,,.【思路点拨】由函数为奇函数,可求时的解析式,即可求出 ;再利用函数在上
6、递增,可得,即可求出.【数学理卷2021届安徽省“江淮十校”高三11月联考(202211)WORD版】4.已知函数的定义域为,且为偶函数,则实数的值可以是 ( ) A. B. C. D.【学问点】函数的奇偶性 B4【答案】【解析】B 解析:的图像由向左平移1个单位得到,所以的定义域为,又为偶函数,故 ,即 ,故选B.【思路点拨】图像平移左加右减,函数的图像左移1个单位得到,由为偶函数可以得定义域关于原点对称,所以两端点之和为0.【数学理卷2021届安徽省“江淮十校”高三11月联考(202211)WORD版】3.函数的大致图像是 ( ) 【学问点】函数图像,奇偶性B8 B4【答案】【解析】B 解
7、析:由函数解析式可得 为偶函数, 即 , 图像取 轴上方部分;当 时, ,其图像在第一象限单调递减,所以选B.【思路点拨】对于分段函数的图像,分别依据不同的定义域画出各段的图像,再依据函数的奇偶性即可得到图像.【数学理卷2021届四川省成都外国语学校高三11月月考(202211)(1)】10.已知R上的连续函数g(x)满足:当时,恒成立(为函数的导函数);对任意的都有,又函数满足:对任意的,都有成立。当时,。若关于的不等式对恒成立,则的取值范围是( )A、 B、 C、 D、或【学问点】函数的单调性;奇偶性;周期性;不等式恒成立问题. B3 B4 E8【答案】【解析】D解析:由得函数是R 上的偶
8、函数,的增函数;是周期为,且当时,的函数.所以命题为关于的不等式:,对恒成立.而在上最大值为,所以或.故选D.【思路点拨】依据已知条件确定函数g(x)的奇偶性单调性,及函数f(x)的周期性,由此把命题关于的不等式对恒成立,转化为,对恒成立.所以只需求在上最大值,利用导数求得此最大值为2,所以或.【数学理卷2021届吉林省长春外国语学校高三上学期期中考试(202211)】11.若为定义在上的偶函数,当时,则当时,( )A. B. C. D. 【学问点】函数的奇偶性与周期性B4【答案解析】C ,则x-4-1,1,又由于为偶函数,-1,0和0,1对称,所以f(x)=,故选C。【思路点拨】依据函数的奇
9、偶性和周期性求出解析式。【数学理卷2021届吉林省长春外国语学校高三上学期期中考试(202211)】4.下列函数既是奇函数,又是上的增函数的是( )A. B. C. D. 【学问点】函数的奇偶性函数的单调性B3 B4【答案解析】D A选项是偶函数,B选项为奇函数但是为减函数,C选项既不是奇函数也不是偶函数,故选D。【思路点拨】依据奇函数偶函数的定义确定,再用增减性求出结果。【数学文卷2021届辽宁省沈阳二中高三上学期期中考试(202211)】11若曲线f(x,y)0上两个不同点处的切线重合,则称这条切线为曲线f(x,y)0的“自公切线”下列方程:x2y21;yx2|x|;y3sin x4cos
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021届备考 2021 备考 2020 全国 名校 数学试题 分类 解析 汇编 12 第一 B4 函数 奇偶性 周期性
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
链接地址:https://www.zixin.com.cn/doc/3822384.html