2021年高考数学(江苏专用-理科)二轮专题复习-专题五--第2讲.docx
《2021年高考数学(江苏专用-理科)二轮专题复习-专题五--第2讲.docx》由会员分享,可在线阅读,更多相关《2021年高考数学(江苏专用-理科)二轮专题复习-专题五--第2讲.docx(9页珍藏版)》请在咨信网上搜索。
1、第2讲椭圆、双曲线、抛物线考情解读(1)以选择、填空的形式考查,主要考查圆锥曲线的标准方程、性质(特殊是离心率),以及圆锥曲线之间的关系,突出考查基础学问、基本技能,属于基础题(2)以解答题的形式考查,主要考查圆锥曲线的定义、性质及标准方程的求解,直线与圆锥曲线的位置关系,经常在学问的交汇点处命题,有时以探究的形式毁灭,有时以证明题的形式毁灭该部分题目多数为综合性问题,考查分析问题、解决问题的力气,综合运用学问的力气等,属于中、高档题,一般难度较大圆锥曲线的定义、标准方程与几何性质名称椭圆双曲线抛物线定义|PF1|PF2|2a(2a|F1F2|)|PF1|PF2|2a(2a|F1F2|)|PF
2、|PM|,点F不在直线l上,PMl于M标准方程1(ab0)1(a0,b0)y22px(p0)图形几何性质范围|x|a,|y|b|x|ax0顶点(a,0)(0,b)(a,0)(0,0)对称性关于x轴,y轴和原点对称关于x轴对称焦点(c,0)(,0)轴 长轴长2a,短轴长2b实轴长2a,虚轴长2b离心率e (0e1)e (e1)e1准线x渐近线yx热点一圆锥曲线的定义与标准方程例1(1)若椭圆C:1的焦点为F1,F2,点P在椭圆C上,且|PF2|4则F1PF2等于()A30 B60 C120 D150(2)已知抛物线x22py(p0)的焦点与双曲线x2y2的一个焦点重合,且在抛物线上有一动点P到x
3、轴的距离为m,P到直线l:2xy40的距离为n,则mn的最小值为_思维启迪(1)PF1F2中利用余弦定理求F1PF2;(2)依据抛物线定义得m|PF|1.再利用数形结合求最值答案(1)C(2)1解析(1)由题意得a3,c,所以|PF1|2.在F2PF1中,由余弦定理可得cosF2PF1.又由于cosF2PF1(0,180),所以F2PF1120.(2)易知x22py(p0)的焦点为F(0,1),故p2,因此抛物线方程为x24y.依据抛物线的定义可知m|PF|1,设|PH|n(H为点P到直线l所作垂线的垂足),因此mn|PF|1|PH|.易知当F,P,H三点共线时mn最小,因此其最小值为|FH|
4、111.思维升华(1)对于圆锥曲线的定义不仅要熟记,还要深化理解细节部分:比如椭圆的定义中要求|PF1|PF2|F1F2|,双曲线的定义中要求|PF1|PF2|F1F2|,抛物线上的点到焦点的距离与到准线的距离相等的转化(2)留意数形结合,画出合理草图(1)已知椭圆C:1(ab0)的离心率为.双曲线x2y21的渐近线与椭圆C有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C的方程为()A.1 B.1C.1 D.1(2) 如图,过抛物线y22px(p0)的焦点F的直线交抛物线于点A,B,交其准线l于点C,若|BC|2|BF|,且|AF|3,则此抛物线的方程为()Ay29xBy26xCy
5、23xDy2x答案(1)D(2)C解析(1)椭圆的离心率为,a2b.椭圆方程为x24y24b2.双曲线x2y21的渐近线方程为xy0,渐近线xy0与椭圆x24y24b2在第一象限的交点为,由圆锥曲线的对称性得四边形在第一象限部分的面积为bb4,b25,a24b220.椭圆C的方程为1.(2)如图,分别过A,B作AA1l于A1,BB1l于B1,由抛物线的定义知,|AF|AA1|,|BF|BB1|,|BC|2|BF|,|BC|2|BB1|,BCB130,A1AF60.连接A1F,则A1AF为等边三角形,过F作FF1AA1于F1,则F1为AA1的中点,设l交x轴于N,则|NF|A1F1|AA1|AF
6、|,即p,抛物线方程为y23x,故选C.热点二圆锥曲线的几何性质例2(1)已知离心率为e的双曲线和离心率为的椭圆有相同的焦点F1,F2,P是两曲线的一个公共点,若F1PF2,则e等于()A. B.C. D3(2)设F1,F2分别是椭圆1 (ab0)的左,右焦点,若在直线x上存在点P,使线段PF1的中垂线过点F2,则椭圆的离心率的取值范围是()A. B.C. D.思维启迪(1)在F1F2P中利用余弦定理列方程,然后利用定义和已知条件消元;(2)可设点P坐标为(,y),考察y存在的条件答案(1)C(2)D解析(1)设椭圆的长半轴长为a1,双曲线的实半轴长为a2,焦距为2c,|PF1|m,|PF2|
7、n,且不妨设mn,由mn2a1,mn2a2得ma1a2,na1a2.又F1PF2,4c2m2n2mna3a,4,即4,解得e,故选C.(2)设P,线段F1P的中点Q的坐标为,当kQF2存在时,则kF1P,kQF2,由kF1PkQF21,得y2,y20,但留意到b22c20,即2c2b20,即3c2a20,即e2,故e1.当kQF2不存在时,b22c20,y0,此时F2为中点,即c2c,得e,综上,得e0,b0)的右焦点为F,以OF为直径作圆交双曲线的渐近线于异于原点的两点A、B,若()0,则双曲线的离心率e为()A2 B3 C. D.(2)(2022课标全国)已知F为双曲线C:x2my23m(
8、m0)的一个焦点,则点F到C的一条渐近线的距离为()A. B3 C.m D3m答案(1)C(2)A解析(1)设OF的中点为C,则2,由题意得,20,ACOF,AOAF,又OAF90,AOF45,即双曲线的渐近线的倾斜角为45,tan 451,则双曲线的离心率e ,故选C.(2)双曲线C的标准方程为1(m0),其渐近线方程为y xx,即yx,不妨选取右焦点F(,0)到其中一条渐近线xy0的距离求解,得d.故选A.热点三直线与圆锥曲线例3过椭圆1(ab0)的左顶点A作斜率为2的直线,与椭圆的另一个交点为B,与y轴的交点为C,已知.(1)求椭圆的离心率;(2)设动直线ykxm与椭圆有且只有一个公共点
9、P,且与直线x4相交于点Q,若x轴上存在确定点M(1,0),使得PMQM,求椭圆的方程思维启迪(1)依据和点B在椭圆上列关于a、b的方程;(2)联立直线ykxm与椭圆方程,利用0,0求解解(1)A(a,0),设直线方程为y2(xa),B(x1,y1),令x0,则y2a,C(0,2a),(x1a,y1),(x1,2ay1),x1a(x1),y1(2ay1),整理得x1a,y1a,点B在椭圆上,()2()21,即1e2,e.(2),可设b23t,a24t,椭圆的方程为3x24y212t0,由,得(34k2)x28kmx4m212t0,动直线ykxm与椭圆有且只有一个公共点P,0,即64k2m24(
10、34k2)(4m212t)0,整理得m23t4k2t,设P(x1,y1)则有x1,y1kx1m,P(,),又M(1,0),Q(4,4km),x轴上存在确定点M(1,0),使得PMQM,(1,)(3,(4km)0恒成立,整理得34k2m2.34k23t4k2t恒成立,故t1.椭圆的方程为1.思维升华待定系数法是求圆锥曲线方程的基本方法;解决直线与圆锥曲线问题的通法是联立方程,利用根与系数的关系,设而不求思想,弦长公式等简化计算;涉及中点弦问题时,也可用“点差法”求解已知椭圆C:1(ab0)的焦距为2,且过点(1,),右焦点为F2.设A,B是C上的两个动点,线段AB的中点M的横坐标为,线段AB的中
11、垂线交椭圆C于P,Q两点(1)求椭圆C的方程;(2)求的取值范围解(1)由于焦距为2,所以a2b21.由于椭圆C过点(1,),所以1.故a22,b21.所以椭圆C的方程为y21.(2)由题意,当直线AB垂直于x轴时,直线AB的方程为x,此时P(,0),Q(,0),得1.当直线AB不垂直于x轴时,设直线AB的斜率为k(k0),M(,m)(m0),A(x1,y1),B(x2,y2),由得(x1x2)2(y1y2)0,则14mk0,故4mk1.此时,直线PQ的斜率为k14m, 直线PQ的方程为ym4m(x)即y4mxm.联立消去y,整理得(32m21)x216m2x2m220.设P(x3,y3),Q
12、(x4,y4)所以x3x4,x3x4.于是(x31)(x41)y3y4x3x4(x3x4)1(4mx3m)(4mx4m)(4m21)(x3x4)(16m21)x3x4m211m2.由于M(,m)在椭圆的内部,故0m2,令t32m21,1t29,则.又1t29,所以1B0时,表示焦点在y轴上的椭圆;BA0时,表示焦点在x轴上的椭圆;AB0)的焦点弦,F为抛物线的焦点,A(x1,y1),B(x2,y2)(1)y1y2p2,x1x2;(2)|AB|x1x2p(为弦AB的倾斜角);(3)SAOB;(4)为定值;(5)以AB为直径的圆与抛物线的准线相切真题感悟1(2022湖北)已知F1,F2是椭圆和双曲
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 年高 数学 江苏 专用 理科 二轮 专题 复习
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。