【优化课堂】2021-2022学年高一数学人教A版必修1-教案:2.3幂函数-Word版含答案.docx
《【优化课堂】2021-2022学年高一数学人教A版必修1-教案:2.3幂函数-Word版含答案.docx》由会员分享,可在线阅读,更多相关《【优化课堂】2021-2022学年高一数学人教A版必修1-教案:2.3幂函数-Word版含答案.docx(3页珍藏版)》请在咨信网上搜索。
2.3 幂函数(教学设计) 教学目的: 1.通过实例,了解幂函数的概念. 2.具体结合函数的图象,了解幂函数的变化状况. 3.在归纳五个幂函数的基本性质时,应留意引导同学类比前面争辩一般的函数、指数函数、对函数等过程中的思想方法,对争辩这些函数的思路作出指导. 教学重点:从五个具体的幂函数中生疏幂函数的一些性质. 教学难点:画五个幂函数的图象并由图象概括其性质是教学中可能遇到的困难. 一、新课导入 先看五个具体的问题: (1)假如张红购买了每千克1元的蔬菜w千克,那么她需要支付p=w元,这里p是w的函数; (2)假如正方形的边长为a,那么正方形的面积,这里是的函数; (3)假如立方体的边长为a,求立方体的体积,这里是a的函数; (4)假如一个正方形场地的面积为,那么这个正方形的边长,这里是的函数; (5)假如某人s内骑车进行了1km,那么他骑车的平均速度km/s,这里是的函数. 争辩:以上五个问题中的函数具有什么共同特征? 它们具有的共同特征:幂的底数是自变量,指数是常数. 从上述函数中,我们观看到,它们都是形如的函数. 二、师生互动,新课讲解: 1、幂函数的定义 一般地,函数叫做幂函数(power function),其中是自变量,是常数.对于幂函数,我们只争辩时的情形. 2、幂函数的图象 在同始终角坐标系内作出幂函数; ; ;;的图象. 观看以上函数的图象的特征,归纳出幂函数的性质. 定义域 R R R 值 域 R R 奇偶性 奇 偶 奇 非奇非偶 奇 单调性 增 增 增 公共点 (1,1) 3、幂函数的性质 1).五个具体的幂函数的性质 (1)函数; ; ;和的图象都通过点(1,1); (2)函数;;是奇函数,函数是偶函数; (3)在区间上,函数,,和是增函数,函数是减函数; (4)在第一象限内,函数的图象向上与轴无限接近,向右与轴无限接近. 2).一般的幂函数的性质 (1)全部的幂函数在(0,+∞)都有定义,并且图象都过点(1,1); (2)时,幂函数的图象通过原点,并且在区间上是增函数; >1时,图象向上,靠近y轴; 0<<1,图景向上,靠近x轴; =1是条直线。 (3)时,幂函数的图象在区间上是减函数.在第一象限内,当从右边趋向原点时,图象在轴右方无限地靠近轴正半轴,当趋于时,图象在轴上方无限地靠近轴正半轴; (4)幂函数的图象,在第一象限内,直线的右侧,图象由下至上,指数由小到大;轴和直线之间,图象由上至下,指数由小到大. 课堂练习: 已知幂函数在第一象限内的图象如图所示,且分别取四个值,则相应于曲线的的值依次为 . 例1:(课本第78页例1)证明幂函数在上是增函数. 变式训练1:利用幂函数的性质,比较下列各题中两个幂的值的大小: (1),;(2),;(3),;(4),. 例2:求下列函数的定义域,并推断它们的奇偶性: (1);(2);(3); (4) 解 (1)函数的定义域是,它是奇函数; (2)函数即,其定义域是,它是偶函数; (3)函数即,其定义域是,它既不是奇函数,也不是偶函数; (4)函数即,其定义域是,它是奇函数. 变式训练2: (1). 设,则使函数的定义域为且为奇函数的全部值为( A ). (A), (B) , (C) , (D) ,, (2). 若函数,则函数在其定义域上是( B ). (A) 单调递减的偶函数 (B) 单调递减的奇函数 (C) 单调递增的偶函数 (D) 单调递增的奇函数 (3)若幂函数f(x)的图象经过点(3,),则其定义域为( ) A.{x|x∈R,x>0} B.{x|x∈R,x<0}C.{x|x∈R,且x≠0} D. R 解析:设f(x)=xα.∵图象过点(3,),∴=3α,即3-2=3a,∴α=-2,即f(x)=x-2=,∴x2≠0,即x≠0. 答案:C 例3:在同一坐标系作出函数y=x2与y=2x的图象。 变式训练3:已知幂函数f(x)= (m∈N*)的图象关于y轴对称,且在(0,+∞)上是减函数,则实数m=________. 解析:∵幂函数f(x)=在(0,+∞)上是减函数,∴m2-2m-3<0,∴-1<m<3,又m∈N*,∴m=1或2,当m=1时,f(x)=x-4,其图象关于y轴对称,符合;当m=2时,f(x)=x-3是奇函数,不符合,∴m=1. 答案:1 布置作业: A组: 1.下图给出4个幂函数的图象,则图象与函数大致对应的是( ) 解析:留意到函数y=x2≥0,且该函数是偶函数,其图象关于y轴对称,结合选项知,该函数图象应与②对应;y==的定义域、值域都是[0,+∞),结合选项知,该函数图象应与③对应;y=x-1=,结合选项知,其图象应与④对应;图象①与y=x3大致对应.综上述所述,选B. 答案:B 2.已知n∈{-1,0,1,2,3},若(-)n>(-)n,则n=__________. 解析:可以逐一进行检验,也可利用幂函数的单调性求解. 答案:-1或2 3.(课本P79习题2.3 NO:1)已知幂函数的图象过点,试求出这个函数的解析式. 4.(课本P79习题2.3 NO: 2)在固定压力差(压力差为常数)下,当气体通过圆形管道时,其流量速率v(单位:cm3/s)与管道半径r(单位:cm)的四次方成正比. (1)写出气流流量速率v关于管道半径r的函数解析式; (2)若气体在半径为3cm的管道中,流量速率为400cm3/s,求该气体通过半径为r的管道时,其流量速率v的表达式; (3)已知(2)中的气体通过的管道半径为5cm,计算该气体的流量速率(精确到1cm3/s). 5.争辩函数的定义域、奇偶性,作出它的图象,并依据图象说出函数的单调性. 6.已知函数f(x)=-xm,且f(4)=-. (1)求m的值; (2)推断f(x)在(0,+∞)上的单调性,并赐予证明. 解:(1)∵f(4)=-,∴-4m=-.∴m=1. (2)f(x)=-x在(0,+∞)上单调递减, 证明如下: 任取0<x1<x2,则f(x1)-f(x2) =(-x1)-(-x2)=(x2-x1)(+1). ∵0<x1<x2,∴x2-x1>0,+1>0. ∴f(x1)-f(x2)>0,∴f(x1)>f(x2), 即f(x)=-x在(0,+∞)上单调递减. B组: 1.假如幂函数f(x)= (p∈Z)是偶函数.且在(0,+∞)上是增函数.求p的值,并写出相应的函数f(x)的解析式. 解析:∵f(x)在(0,+∞)上是增函数,∴-p2+p+>0,即p2-2p-3<0.∴-1<p<3,又∵f(x)是偶函数且p∈Z.∴p=1,故f(x)=x2.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 优化课堂 优化 课堂 2021 2022 学年 高一数 学人 必修 教案 2.3 函数 Word 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文
本文标题:【优化课堂】2021-2022学年高一数学人教A版必修1-教案:2.3幂函数-Word版含答案.docx
链接地址:https://www.zixin.com.cn/doc/3822010.html
链接地址:https://www.zixin.com.cn/doc/3822010.html