【2022届走向高考】高三数学一轮(人教A版)基础巩固:第8章-第6节-抛物线.docx
《【2022届走向高考】高三数学一轮(人教A版)基础巩固:第8章-第6节-抛物线.docx》由会员分享,可在线阅读,更多相关《【2022届走向高考】高三数学一轮(人教A版)基础巩固:第8章-第6节-抛物线.docx(7页珍藏版)》请在咨信网上搜索。
第八章 第六节 一、选择题 1.(文)(2021·江西吉安模拟)若点P到点F(0,2)的距离比它到直线y+4=0的距离小2,则点P的轨迹方程为( ) A.y2=8x B.y2=-8x C.x2=8y D.x2=-8y [答案] C [解析] 由题意知点P到点F(0,2)的距离比它到直线y+4=0的距离小2,因此点P到点F(0,2)的距离与到直线y+2=0的距离相等,故点P的轨迹是以F为焦点,y=-2为准线的抛物线,∴P的轨迹方程为x2=8y.选C. (理)(2021·东北三校模拟)已知抛物线y2=2px(p>0)的焦点为F,点P1(x1,y1),P2(x2,y2),P3(x3,y3)在抛物线上,且2x2=x1+x3,则有( ) A.|FP1|+|FP2|=|FP3| B.|FP1|2+|FP2|2=|FP3|2 C.2|FP2|=|FP1|+|FP3| D.|FP2|2=|FP1|·|FP3| [答案] C [解析] 抛物线的准线方程为x=-,由定义得|FP1|=x1+,|FP2|=x2+,|FP3|=x3+,则|FP1|+|FP3|=x1++x3+=x1+x3+p,2|FP2|=2x2+p,由2x2=x1+x3,得2|FP2|=|FP1|+|FP3|,故选C. 2.已知直线l1:4x-3y+6=0和直线l2:x=-1,P是抛物线y2=4x上一动点,则点P到直线l1和直线l2的距离之和的最小值是( ) A.2 B.3 C. D. [答案] A [解析] 直线l2:x=-1为抛物线y2=4x的准线,由抛物线的定义知,P到l2的距离等于P到抛物线的焦点F(1,0)的距离,故本题化为在抛物线y2=4x上找一个点P,使得P到点F(1,0)和直线l2的距离之和最小,最小值为F(1,0)到直线l1:4x-3y+6=0的距离,即dmin==2,故选A. [点评] 与抛物线有关的最值问题常见题型. (1)点在抛物线外,利用两点间线段最短求最小值. ①已知点P是抛物线y2=2x上的一个动点,则点P到点(0,2)的距离与点P到该抛物线准线的距离之和的最小值为( ) A. B.3 C. D. [答案] A [解析] 抛物线y2=2x的焦点为F(,0),准线是l,由抛物线的定义知,点P到焦点F的距离等于它到准线l的距离,因此要求点P到点(0,2)的距离与点P到抛物线的准线的距离之和的最小值,可以转化为求点P到点(0,2)的距离与点P到焦点F的距离之和的最小值,结合图形不难得知相应的最小值就等于焦点F到点(0,2)的距离.因此所求的最小值等于=,选A. ②(2021·甘肃天水调研)已知P为抛物线y=x2上的动点,点P在x轴上的射影为M,点A的坐标是(2,0),则|PA|+|PM|的最小值是________. [答案] -1 [解析] 如图,抛物线y=x2,即x2=4y的焦点F(0,1),记点P在抛物线的准线l:y=-1上的射影为P′,依据抛物线的定义知,|PP′|=|PF|, 则|PP′|+|PA|=|PF|+|PA|≥|AF|==. 所以(|PA|+|PM|)min =(|PA|+|PP′|-1)min=-1. (2)定点在抛物线内,利用点到直线的垂线段最短求最小值. ③(2021·河南洛阳、安阳统考)点P在抛物线x2=4y的图象上,F为其焦点,点A(-1,3),若使|PF|+|PA|最小,则相应P的坐标为________. [答案] (-1,) [解析] 由抛物线定义可知PF的长等于点P到抛物线准线的距离,所以过点A作抛物线准线的垂线,与抛物线的交点(-1,)即为所求点P的坐标,此时|PF|+|PA|最小. ④已知抛物线y2=2x的焦点是F,点P是抛物线上的动点,又有点A(3,2),求|PA|+|PF|的最小值,并求出取最小值时P点的坐标. [分析] 抛物线上点P到焦点F的距离等于点P到准线l的距离d,求|PA|+|PF|的问题可转化为|PA|+d的问题,运用三点共线可使问题得到解决. [解析] 将x=3代入抛物线方程y2=2x, 得y=±,∵>2, ∴点A在抛物线内部. 设抛物线上点P到准线l:x=-的距离为d, 由定义,知|PA|+|PF|=|PA|+d, 当PA⊥l时,|PA|+d最小,最小值为, 即|PA|+|PF|的最小值为, 此时P点纵坐标为2,代入y2=2x,得x=2, 即点P的坐标为(2,2). (3)抛物线上动点到定直线与抛物线准线(或焦点)距离和(或差)的最值转化为点到直线距离最小. ⑤已知P是抛物线y2=4x上一动点,则点P到直线l:2x-y+3=0和y轴的距离之和的最小值是( ) A. B. C.2 D.-1 [答案] D [解析] 由题意知,抛物线的焦点为F(1,0).设点P到直线l的距离为d,由抛物线的定义可知,点P到y轴的距离为|PF|-1,所以点P到直线l的距离与到y轴的距离之和为d+|PF|-1.易知d+|PF|的最小值为点F到直线l的距离,故d+|PF|的最小值为=,所以d+|PF|-1的最小值为-1. (4)利用直角三角形斜边大于直角边求最小值. ⑥(2022·陕西质检)已知点M(-3,2)是坐标平面内确定点,若抛物线y2=2x的焦点为F,点Q是该抛物线上的一动点,则|MQ|-|QF|的最小值是( ) A. B.3 C. D.2 [答案] C [解析] 如图,|MQ′|-|Q′F|=|MQ′|-|Q′A′|=|MA′|=|NA|=|NQ|-|AQ|≤|MQ|-|AQ|=|MQ|-|QF|. (其中l是抛物线的准线,QA⊥l,垂足为A,Q′M⊥l垂足为A′,MN⊥QN), ∵抛物线的准线方程为x=-, ∴|QM|-|QF|≥|xQ+3|-|xQ+|=3-=,选C. (5)与其他曲线有关的抛物线最值问题. ⑦(2022·忻州联考)已知P为抛物线y2=4x上一个动点,Q为圆x2+(y-4)2=1上一个动点,那么点P到点Q的距离与点P到抛物线的准线距离之和的最小值是________. [答案] -1 [解析] 抛物线y2=4x的焦点为F(1,0),圆x2+(y-4)2=1的圆心为C(0,4),设点P到抛物线的准线距离为d,依据抛物线的定义有d=|PF|,∴|PQ|+d=|PQ|+|PF|≥(|PC|-1)+|PF|≥|CF|-1=-1. (6)与平面对量交汇命题. ⑧已知点A(2,0)、B(4,0),动点P在抛物线y2=-4x上运动,则·取得最小值时的点P的坐标是______. [答案] (0,0) [解析] 设P,则=,=,·=+y2=+y2+8≥8,当且仅当y=0时取等号,此时点P的坐标为(0,0). 3.(文)(2021·安徽省级示范高中联考)设O是坐标原点,F是抛物线y2=4x的焦点,A是抛物线上的一点,与x轴正方向的夹角为60°,则△OAF的面积为( ) A. B.2 C. D.1 [答案] C [解析] 由题意知,F(1,0),过A作AD⊥x轴于D.令|FD|=m,则|FA|=2m,由抛物线的定义知|AF|=p+|FD|=2+m=2m,即m=2,所以|AD|=2, S△OAF=|OF|·|AD|=×1×2=. (理)(2022·湖北武汉调研)已知O为坐标原点,F为抛物线C:y2=4x的焦点,P为C上一点,若|PF|=4,则△POF的面积为( ) A.2 B.2 C.2 D.4 [答案] C [解析] 设P点坐标为(x0,y0),则由抛物线的焦半径公式得|PF|=x0+=4,x0=3,代入抛物线的方程,得|y0|=2,S△POF=|y0|·|OF|=2,选C. 4.(文)(2022·辽宁五校联考)已知AB是抛物线y2=2x的一条焦点弦,|AB|=4,则AB中点C的横坐标是( ) A.2 B. C. D. [答案] C [解析] 设A(x1,y1),B(x2,y2),则|AB|=x1+x2+1 =4, ∴x1+x2=3,∴=,即AB中点C的横坐标是. (理)(2022·武昌模拟)直线y=k(x-2)交抛物线y2=8x于A,B两点,若AB中点的横坐标为3,则弦AB的长为( ) A.6 B.10 C.2 D.16 [答案] B [解析] 将y=k(x-2)代入y2=8x中消去y得,k2x2-(4k2+8)x+4k2=0, 设A(x1,y1),B(x2,y2), ∴x1+x2==6,∴k=±2, ∴|AB|=|x1-x2|=·=·=10. 5.(文)设O为坐标原点,F为抛物线y2=4x的焦点,A为抛物线上一点,若·=-4,则点A的坐标为( ) A.(2,±2) B.(1,±2) C.(1,2) D.(2,2) [答案] B [解析] 设点A的坐标为(x0,y0),∴y=4x0① 又F(1,0),∴=(x0,y0),=(1-x0,-y0), ∵·=-4,∴x0-x-y=-4,② 解①②组成的方程组得或 [点评] 向量与解析几何相结合,向量往往要化为坐标的形式. (理)设M(x0,y0)为抛物线C:x2=8y上一点,F为抛物线C的焦点,以F为圆心、|FM|为半径的圆和抛物线C的准线相交,则y0的取值范围是( ) A.(0,2) B.[0,2] C.(2,+∞) D.[2,+∞) [答案] C [解析] 设圆的半径为r,由于F(0,2)是圆心,抛物线C的准线方程y=-2.圆与准线相切时半径为4.若圆与准线相交则r>4.又由于点M(x0,y0)为抛物线x2=8y上一点,所以有x=8y0.又点M(x0,y0)在圆x2+(y-2)2=r2上.所以x+(y0-2)2=r2>16,所以8y0+(y0-2)2>16,即有y+4y0-12>0,解得y0>2或y0<-6(舍), ∴y0>2.故选C. 6.(2021·北京东城区统一检测)已知抛物线y2=2px的焦点F与双曲线-=1的右焦点重合,抛物线的准线与x轴的交点为K,点A在抛物线上且|AK|=|AF|,则△AFK的面积为( ) A.4 B.8 C.16 D.32 [答案] D [解析] 由题意知,抛物线焦点坐标为(4,0).作AA′垂直于抛物线的准线,垂足为A′,依据抛物线定义知|AA′|=|AF|,所以在△AA′K中,|AK|=|AA′|,故∠KAA′=45°,此时不妨认为直线AK的倾斜角为45°,则直线AK的方程为y=x+4,代入抛物线方程y2=16x中,得y2=16(y-4),即y2-16y+64=0,解得y=8,点A的坐标为(4,8),故△AFK的面积为S△AFK=|FK|·|yA|=×8×8=32. 二、填空题 7.(2021·辽宁大连一模)已知直线l与抛物线y2=8x交于A,B两点,且l经过抛物线的焦点F,A点的坐标为(8,8),则线段AB的中点到准线的距离是________. [答案] [解析] 由y2=8x知2p=8,∴p=4,则点F的坐标为(2,0). 由题设可知,直线l的斜率存在,设l的方程为y=k(x-2),点A,B的坐标分别为(8,8),(xB,yB). 又点A(8,8)在直线l上,∴8=k(8-2), 解得k=. ∴直线l的方程为y=(x-2).① 将①代入y2=8x,整理得2x2-17x+8=0, 则8+xB=,∴xB=. ∴线段AB的中点到准线的距离是 +=+2=. [解法探究] 求得xB=后,进一步可得yB=-2, ∴|AB|=. ∴AB的中点到准线距离d=(|AF|+|BF|)=|AB|=. 8.(2022·山东广饶一中期末)抛物线y2=8x的顶点为O,A(1,0),过焦点且倾斜角为的直线l与抛物线交于M,N两点,则△AMN的面积是________. [答案] 4 [解析] 焦点F(2,0),直线l:x=y+2,代入抛物线y2=8x,消去x,得y2-8y-16=0.设M(x1,y1),N(x2,y2),则y1+y2=8,y1y2=-16.∴|y1-y2|==8.故△AMN的面积S=×1×|y1-y2|=4. 9.(文)已知抛物线型拱桥的顶点距离水面2m时,测量水面宽为8m,当水面上升m后,水面的宽度是________m. [答案] 4 [解析] 建立平面直角坐标系如图,设开头时水面与抛物线的一个交点为A,由题意可知A(4,-2),故可求得抛物线的方程为y=-x2,设水面上升后交点为B,则点B的纵坐标为-,代入抛物线方程y=-x2可求出B点的横坐标为2,所以水面宽为4m. (理)下图是抛物线形拱桥,当水面在l时,拱顶离水面2m,水面宽4m,水位下降1m后,水面宽________m. [答案] 2 [解析] 本题考查了抛物线方程在实际问题中的应用. 如图建立坐标系 设方程x2=-2py(p>0),由题意知点(2,-2)在抛物线上,可得p=1, 则方程为x2=-2y,当y=-3时,x=±, 所以水面宽2m. [点评] 抛物线方程在实际问题中的应用,关键是合理建立平面直角坐标系,还要留意数据的实际意义. 三、解答题 10.(2021·长春三校调研)在直角坐标系xOy中,点M(2,-),点F为抛物线C:y=mx2(m>0)的焦点,线段MF恰被抛物线C平分. (1)求m的值; (2)过点M作直线l交抛物线C于A、B两点,设直线FA、FM、FB的斜率分别为k1、k2、k3,问k1、k2、k3能否成公差不为零的等差数列?若能,求直线l的方程;若不能,请说明理由. [解析] (1)由题得抛物线C的焦点F的坐标为(0,),线段MF的中点N(1,-)在抛物线C上, ∴-=m,8m2+2m-1=0,∴m=(m=-舍去). (2)由(1)知抛物线C:x2=4y,F(0,1). 设直线l的方程为y+=k(x-2),A(x1,y1)、B(x2,y2), 由得x2-4kx+8k+2=0, Δ=16k2-4(8k+2)>0,∴k<或k>. 假设k1、k2、k3能成公差不为零的等差数列,则k1+k3=2k2. 而k1+k3=+= == ==, k2=-,∴=-,8k2+10k+3=0, 解得k=-(符合题意)或k=-(不合题意,舍去). ∴直线l的方程为y+=-(x-2),即x+2y-1=0. ∴k1、k2、k3能成公差不为零的等差数列,此时直线l的方程为x+2y-1=0. 一、选择题 11.(文)若抛物线y2=4x的焦点是F,准线是l,则经过点F、M(4,4)且与l相切的圆共有( ) A.0个 B.1个 C.2个 D.3个 [答案] C [解析] 经过F、M的圆的圆心在线段FM的垂直平分线上,设圆心为C,则|CF|=|CM|,又圆C与l相切,所以C到l距离等于|CF|,从而C在抛物线y2=4x上. 故圆心为FM的垂直平分线与抛物线的交点,明显有两个交点,所以共有两个圆. (理)(2021·乌鲁木齐第一次诊断)设平面区域D是由双曲线y2-=1的两条渐近线和抛物线y2=-8x的准线所围成的三角形(含边界与内部).若点(x,y)∈D,则x+y的最小值为( ) A.-1 B.0 C.1 D.3 [答案] B [解析] 由题意知,双曲线的渐近线方程为y=±x,抛物线的准线方程为x=2,设z=x+y,得y=-x+z,平移直线y=-x过点O(0,0)时,直线y=-x+z的纵截距最小,故zmin=0. 12.(2022·山东淄博一模)过抛物线y2=4x焦点F的直线交其于A,B两点,A在第一象限,B在第四象限,O为坐标原点.若|AF|=3,则△AOB的面积为( ) A. B. C. D.2 [答案] C [解析] 设A(x0,y0),由|AF|=1+x0=3,得x0=2,∴A(2,2),直线AB的方程为y=2(x-1),与y2=4x联立,解得B(,-).∴S△AOB=×1×|2-(-)|=. 13.(2022·课标全国Ⅱ理)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则△OAB的面积为( ) A. B. C. D. [答案] D [解析] 由已知得F(,0),故直线AB的方程为y=tan30°·(x-),即y=x-. 设A(x1,y1),B(x2,y2), 联立 将①代入②并整理得x2-x+=0, ∴x1+x2=, ∴线段|AB|=x1+x2+p=+=12. 又原点(0,0)到直线AB的距离为d==. ∴S△OAB=|AB|d=×12×=. 14.(2022·课标全国Ⅰ理)已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若=4,则|QF|=( ) A. B. C.3 D.2 [答案] C [解析] 抛物线的焦点是F(2,0),过点Q作抛物线的准线的垂线,垂足是A,则|QA|=|QF|,抛物线的准线与x轴的交点为G,由于=4,∴=,由于△QAP∽△FGP,所以可得==,所以|QA|=3,所以|QF|=3. 二、填空题 15.已知抛物线y2=2px(p>0)上一点M(1,m)(m>0)到其焦点的距离为5,双曲线-y2=1的左顶点为A,若双曲线的一条渐近线与直线AM平行,则实数a的值是________. [答案] [解析] 依据抛物线定义可得,抛物线准线方程为x=-4,则抛物线方程为y2=16x. 把M(1,m)代入y2=16x得m=4,即M(1,4). 在双曲线-y2=1中,A(-,0),则 kAM==.解得a=. 16.(文)(2021·辽宁五校联考)设抛物线x2=12y的焦点为F,经过点P(2,1)的直线l与抛物线相交于A,B两点,又知点P恰为AB的中点,则|AF|+|BF|=________. [答案] 8 [解析] 分别过点A,B,P作准线的垂线,垂足分别为M,N,Q,依据抛物线上的点到焦点的距离等于该点到准线的距离,得|AF|+|BF|=|AM|+|BN|=2|PQ|=8. (理)(2022·湖南理)如图,正方形ABCD和正方形DEFG的边长分别为a、b(a<b),原点O为AD的中点,抛物线y2=2px(p>0)经过C、F两点,则=________. [答案] +1 [解析] 由题可得C(,-a),F(+b,b), ∵C、F在抛物线y2=2px上,∴ ∴b2-2ab-a2=0, ∴=+1,故填+1. 三、解答题 17.(2022·开封摸底考试)已知圆(x-a)2+(y+1-r)2=r2(r>0)过点F(0,1),圆心M的轨迹为C. (1)求轨迹C的方程; (2)设P为直线l:x-y-2=0上的点,过点P作曲线C的两条切线PA,PB,当点P(x0,y0)为直线l上的定点时,求直线AB的方程; (3)当点P在直线l上移动时,求|AF|·|BF|的最小值. [解析] (1)依题意,由圆过定点F可知C的方程为x2=4y. (2)抛物线C的方程为y=x2,求导得y′=x. 设A(x1,y1),B(x2,y2)(其中y1=,y2=),则切线PA,PB的斜率分别为x1,x2, 所以切线PA的方程为y-y1=(x-x1), 即x1x-2y-2y1=0. 同理可得切线PB的方程为x2x-2y-2y2=0. 由于切线PA,PB均过点P(x0,y0),所以x1x0-2y0-2y1=0,x2x0-2y0-2y2=0, 所以(x1,y1),(x2,y2)为方程x0x-2y0-2y=0的两组解. 所以直线AB的方程为x0x-2y-2y0=0. (3)由抛物线定义可知|AF|=y1+1,|BF|=y2+1, 所以|AF|·|BF|=(y1+1)(y2+1)=y1y2+(y1+y2)+1, 联立方程,消去x整理得y2+(2y0-x)y+y=0, 由一元二次方程根与系数的关系可得y1+y2=x-2y0,y1y2=y, 所以|AF|·|BF|=y1y2+(y1+y2)+1=y+x-2y0+1. 又点P(x0,y0)在直线l上,所以x0=y0+2, 所以y+x-2y0+1=2y+2y0+5=2(y0+)2+, 所以当y0=-时,|AF|·|BF|取得最小值,且最小值为. 18.(文)若椭圆C1:+=1(0<b<2)的离心率等于,抛物线C2:x2=2py(p>0)的焦点在椭圆C1的顶点上. (1)求抛物线C2的方程; (2)若过M(-1,0)的直线l与抛物线C2交于E、F两点,又过E、F作抛物线C2的切线l1、l2,当l1⊥l2时,求直线l的方程. [解析] (1)已知椭圆的长半轴长为a=2,半焦距c=, 由离心率e===得,b2=1. ∴椭圆的上顶点为(0,1),即抛物线的焦点为(0,1), ∴p=2,抛物线的方程为x2=4y. (2)由题知直线l的斜率存在且不为零,则可设直线l的方程为y=k(x+1),E(x1,y1),F(x2,y2), ∵y=x2,∴y′=x, ∴切线l1、l2的斜率分别为x1、x2, 当l1⊥l2时,x1·x2=-1,即x1·x2=-4, 由得x2-4kx-4k=0, 由Δ=(-4k)2-4×(-4k)>0,解得k<-1或k>0. 又x1·x2=-4k=-4,得k=1. ∴直线l的方程为y=x+1. (理)已知点C(1,0),点A、B是⊙O:x2+y2=9上任意两个不同的点,且满足·=0,设P为弦AB的中点. (1)求点P的轨迹T的方程; (2)摸索究在轨迹T上是否存在这样的点:它到直线x=-1的距离恰好等于到点C的距离?若存在,求出这样的点的坐标;若不存在,说明理由. [解析] (1)法一:连接CP,由·=0知,AC⊥BC,∴|CP|=|AP|=|BP|=|AB|, 由垂径定理知|OP|2+|AP|2=|OA|2,即|OP|2+|CP|2=9, 设点P(x,y),有(x2+y2)+[(x-1)2+y2]=9, 化简得,x2-x+y2=4. 法二:设A(x1,y1),B(x2,y2),P(x,y), 依据题意知,x+y=9,x+y=9,2x=x1+x2,2y=y1+y2, ∴4x2=x+2x1x2+x,4y2=y+2y1y2+y, 故4x2+4y2=(x+y)+(2x1x2+2y1y2)+(x+y)=18+2(x1x2+y1y2),① 又∵·=0,∴(1-x1,-y1)·(1-x2,-y2)=0, ∴(1-x1)×(1-x2)+y1y2=0,故x1x2+y1y2=(x1+x2)-1=2x-1, 代入①式得,4x2+4y2=18+2(2x-1), 化简得,x2-x+y2=4. (2)依据抛物线的定义,到直线x=-1的距离等于到点C(1,0)的距离的点都在抛物线y2=2px上,其中=1,∴p=2,故抛物线方程为y2=4x, 由方程组得,x2+3x-4=0, 解得x1=1,x2=-4, 由于x≥0,故取x=1,此时y=±2, 故满足条件的点存在,其坐标为(1,-2)和(1,2).- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022届走向高考 2022 走向 高考 数学 一轮 人教 基础 巩固 抛物线
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文