2021高中数学(人教A版)选修2-2课后巩固:1-3-导数的应用2.docx
《2021高中数学(人教A版)选修2-2课后巩固:1-3-导数的应用2.docx》由会员分享,可在线阅读,更多相关《2021高中数学(人教A版)选修2-2课后巩固:1-3-导数的应用2.docx(2页珍藏版)》请在咨信网上搜索。
1.函数f(x)的定义域为R,导函数f′(x)的图像如图所示,则函数f(x)( ) A.无极大值点,有四个微小值点 B.有三个极大值点、两个微小极值点 C.有两个极大值点、两个微小值点 D.有四个极大值点、无微小值点 答案 C 2.f′(x0)=0是f(x)在点x0处取极值的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 答案 B 解析 f′(x0)=0不能保证f′(x)在x0左右两边异号,故不能保证有极值,f(x)在x0处有极值必定f′(x0)=0. 3.函数y=ax3+bx2取得极大值和微小值时的x的值分别为0和,则( ) A.a-2b=0 B.2a-b=0 C.2a+b=0 D.a+2b=0 答案 D 解析 y′=3ax2+2bx,据题意, 0、是方程3ax2+2bx=0的两根, ∴-=, ∴a+2b=0. 4.设a<b,则函数y=(x-a)2·(x-b)的图像可能是( ) 答案 C 解析 f′(x)=(x-a)(3x-2b-a). 令f′(x)=0⇔(x-a)(3x-2b-a)=0, 得x1=a,x2=. ∵a<b,∴a<<b.∴x1<x2. f′(x)>0⇔x>或x<a. f′(x)<0⇔a<x<. 函数的大致图像如右: 5.设f(x)、g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(-3)=0,则不等式f(x)g(x)<0的减区间是( ) A.(-3,0)和(3,+∞) B.(-3,0)和(0,3) C.(-∞,-3)和(3,+∞) D.(-∞,-3)和(0,3) 答案 D 解析 ∵[f(x)g(x)]′=f′(x)g(x)+f(x)g′(x), ∴由题意知,当x<0时,[f(x)g(x)]′>0. ∴f(x)g(x)在(-∞,0)上是增函数. 又g(-3)=0,∴f(-3)g(-3)=0. ∴x∈(-∞,-3)时,f(x)g(x)<0; x∈(-3,0)时,f(x)g(x)>0. 又∵f(x)、g(x)分别是定义在R上的奇函数和偶函数, ∴f(x)g(x)在R上是奇函数,其图像关于原点对称. ∴当x>0且x∈(0,3)时,f(x)g(x)<0. 6.设函数f(x)=x3-3ax+b(a≠0). (1)若曲线y=f(x)在点(2,f(2))处与直线y=8相切,求a,b的值; (2)求函数f(x)的单调区间与极值点. 解析 (1)由已知可得f′(x)=3x2-3a.由于曲线y= f(x)在点(2,f(2))处与直线y=8相切, 所以即 解得a=4,b=24. (2)f′(x)=3(x2-a)(a≠0). 当a<0时,f′(x)>0,函数f(x)在(-∞,+∞)上单调递增,此时函数f(x)没有极值点. 当a>0时,由f′(x)=0,得x=±. 当x∈(-∞,-)时,f′(x)>0,函数f(x)单调递增; 当x∈(-,)时,f′(x)<0,函数f(x)单调递减; 当x∈(,+∞)时,f′(x)>0,函数f(x)单调递增. 此时x=-是f(x)的极大值点,x=是f(x)的微小值点.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 高中数学 人教 选修 课后 巩固 导数 应用
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文