2021年高考数学(四川专用-理)一轮复习考点突破:第8篇-第6讲-双曲线.docx
《2021年高考数学(四川专用-理)一轮复习考点突破:第8篇-第6讲-双曲线.docx》由会员分享,可在线阅读,更多相关《2021年高考数学(四川专用-理)一轮复习考点突破:第8篇-第6讲-双曲线.docx(8页珍藏版)》请在咨信网上搜索。
第6讲 双曲线 [最新考纲] 1.了解双曲线的定义、几何图形和标准方程,知道其简洁的几何性质(范围、对称性、顶点、离心率、渐近线). 2.了解双曲线的实际背景及双曲线的简洁应用. 3.理解数形结合的思想. 知 识 梳 理 1.双曲线的定义 平面内动点P与两个定点F1,F2(|F1F2|=2c>0)的距离之差的确定值为常数2a(2a<2c),则点P的轨迹叫双曲线.这两个定点叫双曲线的焦点,两焦点间的距离叫焦距. 2.双曲线的标准方程和几何性质 标准方程 -=1(a>0,b>0) -=1(a>0,b>0) 性 质 范 围 x≥a或x≤-a,y∈R x∈R,y≤-a或y≥a 对称性 对称轴:坐标轴;对称中心:原点 顶点 A1(-a,0),A2(a,0) A1(0,-a),A2(0,a) 渐近线 y=±x y=±x 离心率 e=,e∈(1,+∞),其中c= 实虚轴 线段A1A2叫做双曲线的实轴,它的长|A1A2|=2a;线段B1B2叫做双曲线的虚轴,它的长|B1B2|=2b;a叫做双曲线的半实轴长,b叫做双曲线的半虚轴长 a,b,c的关系 c2=a2+b2(c>a>0,c>b>0) 辨 析 感 悟 1.对双曲线定义的生疏 (1)平面内到点F1(0,4),F2(0,-4)距离之差等于6的点的轨迹是双曲线.(×) (2)平面内到点F1(0,4),F2(0,-4)距离之差的确定值等于8的点的轨迹是双曲线.(×) 2.对双曲线的标准方程和几何性质的理解 (3)方程-=1(mn<0)表示焦点在x轴上的双曲线.(×) (4)(2021·新课标全国Ⅰ卷改编)已知双曲线C:-=1(a>0,b>0)的离心率为,则C的渐近线方程为y=±x.(×) (5)(2021·陕西卷改编)双曲线-=1的离心率为,则m等于9. (√) (6)若直线与双曲线交于一点,则直线与双曲线相切.(×) [感悟·提升] 1.一点提示 双曲线定义中的“差”必需是“确定值的差”,常数必需小于|F1F2|且大于零,如(1)中应为双曲线的一支;如(2)中应为两条射线. 2.二个防范 一是双曲线-=1(a>0,b>0)的渐近线方程为y=±x,而双曲线-=1(a>0,b>0)的渐近线方程为y=±x,应留意其区分与联系,如(4); 二是直线与双曲线交于一点时,不肯定相切,例如:当直线与双曲线的渐近线平行时,直线与双曲线相交于一点,但不是相切;反之,当直线与双曲线相切时, 直线与双曲线仅有一个交点,如(6). 考点一 双曲线的定义及应用 【例1】 (1)若双曲线-=1上的一点P到它的右焦点的距离为8,则点P到它的左焦点的距离是 ( ). A.4 B.12 C.4或12 D.6 (2)已知F为双曲线C:-=1的左焦点,P,Q为C上的点.若PQ的长等于虚轴长的2倍,点A(5,0)在线段PQ上, 则△ PQF的周长为________. 解析 (1)由题意知c==4,设双曲线的左焦点为F1(-4,0),右焦点为F2(4,0),且|PF2|=8.当P点在双曲线右支上时,|PF1|-|PF2|=4,解得|PF1|=12;当P点在双曲线左支上时,|PF2|-|PF1|=4,解得|PF1|=4,所以|PF1|=4或12,即P到它的左焦点的距离为4或12. (2)由-=1得a=3,b=4,c=5. ∴|PQ|=4b=16>2a. 又∵A(5,0)在线段PQ上,∴P,Q在双曲线的右支上, 且PQ所在直线过双曲线的右焦点, 由双曲线定义知∴|PF|+|QF|=28. ∴△PQF的周长是|PF|+|QF|+|PQ|=28+16=44. 答案 (1)C (2)44 规律方法 (1)双曲线定义的集合语言:P={M|||MF1|-|MF2||=2a,0<2a<|F1F2|}是解决与焦点三角形有关的计算问题的关键,切记对所求结果进行必要的检验. (2)利用定义解决双曲线上的点与焦点的距离有关问题时,弄清点在双曲线的哪支上. 【训练1】 (1)(2022·大连模拟)设P是双曲线-=1上一点,F1,F2分别是双曲线左、右两个焦点,若|PF1|=9,则|PF2|= ( ). A.1 B.17 C.1或17 D.以上答案均不对 (2)已知F是双曲线-=1的左焦点,A(1,4),P是双曲线右 支上的动点,则|PF|+|PA|的最小值为 ( ). A.5 B.5+4 C.7 D.9 解析 (1)由双曲线定义||PF1|-|PF2||=8,又|PF1|=9,∴|PF2|=1或17,但应留意双曲线的右顶点到右焦点距离最小为c-a=6-4=2>1,∴|PF2|=17. (2)如图所示,设双曲线的右焦点为E,则E(4,0).由双曲线的定义及标准方程得|PF|-|PE|=4, 则|PF|+|PA|=4+|PE|+|PA|.由图可得,当A,P、E三点共线时,(|PE|+|PA|)min=|AE|=5, 从而|PF|+|PA|的最小值为9. 答案 (1)B (2)D 考点二 求双曲线的标准方程 【例2】 (1)已知双曲线-=1(a>0,b>0)和椭圆+=1有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为________. (2)与双曲线x2-2y2=2有公共渐近线,且过点M(2,-2)的双曲线方程为________. 解析 (1)椭圆+=1的焦点坐标为F1(-,0),F2(,0),离心率为e=.由于双曲线-=1与椭圆+=1有相同的焦点,因此a2+b2=7. 又双曲线的离心率e==,所以=,所以a=2,b2=c2-a2=3,故双曲线的方程为-=1. (2)设与双曲线-y2=1有公共渐近线的双曲线方程为-y2=k,将点(2,-2)代入得k=-(-2)2=-2. ∴双曲线的标准方程为-=1. 答案 (1)-=1 (2)-=1 规律方法 求双曲线的标准方程的基本方法是待定系数法.具体过程是先定形,再定量,即先确定双曲线标准方程的形式,然后再依据a,b,c,e及渐近线之间的关系,求出a,b的值.假如已知双曲线的渐近线方程,求双曲线的标准方程,可利用有公共渐近线的双曲线方程为-=λ(λ≠0),再由条件求出λ的值即可. 【训练2】 依据下列条件,求双曲线的标准方程. (1)虚轴长为12,离心率为; (2)焦距为26,且经过点M(0,12). (3)经过两点P(-3,2)和Q(-6,-7). 解 (1)设双曲线的标准方程为 -=1或-=1(a>0,b>0). 由题意知,2b=12,e==.∴b=6,c=10,a=8. ∴双曲线的标准方程为-=1或-=1. (2)∵双曲线经过点M(0,12),∴M(0,12)为双曲线的一个顶点,故焦点在y轴上,且a=12. 又2c=26,∴c=13.∴b2=c2-a2=25. ∴双曲线的标准方程为-=1. (3)设双曲线方程为mx2-ny2=1(mn>0). ∴解得 ∴双曲线的标准方程为-=1. 考点三 双曲线的几何性质 【例3】 (1)(2021·湖南卷)设F1,F2是双曲线C:-=1(a>0,b>0)的两个焦点.若在C上存在一点P,使PF1⊥PF2,且∠PF1F2=30°,则C的离心率为________. (2)设F1,F2分别为双曲线-=1(a>0,b>0)的左、右焦点.若在双曲线右支上存在点P,满足|PF2|=|F1F2|,且F2到直线PF1的距离等于双曲线的实轴长,则该双曲线的渐近线方程为( ). A.3x±4y=0 B.3x±5y=0 C.4x±3y=0 D.5x+4y=0 解析 (1)由于PF1⊥PF2,∠PF1F2=30°, 所以|PF2|=|F1F2|=c,|PF1|=|F1F2|=c. 由双曲线的定义知,|PF1|-|PF2|=2a, 即c-c=2a,所以离心率e==+1. (2)设PF1的中点为M,由|PF2|=|F1F2|,故F2M⊥PF1,即|F2M|=2a,在直角三角形F1F2M中,|F1M|==2b,故|PF1|=4b,依据双曲线的定义4b-2c=2a,即2b-a=c,即(2b-a)2=a2+b2,即3b2-4ab=0,即3b=4a,故双曲线的渐近线方程是y=±x,即y=±x,即4x±3y=0. 答案 (1)+1 (2)C 规律方法 在双曲线的几何性质中,涉及较多的为离心率和渐近线方程. (1)求双曲线离心率或离心率范围的两种方法:一种是直接建立e的关系式求e或e的范围;另一种是建立a,b,c的齐次关系式,将b用a,e表示,令两边同除以a或a2化为e的关系式,进而求解. (2)求曲线-=1(a>0,b>0)的渐近线的方法是令-=0,即得两渐近线方程±=0. 【训练3】 (1)设点P在双曲线-=1(a,b>0)的右支上,双曲线的左、右焦点分别为F1,F2,若|PF1|=4|PF2|,则双曲线离心率的取值范围是________. (2)已知双曲线的渐近线方程为2x±3y=0,则该双曲线的离心率为________. 解析 (1)由双曲线的定义得|PF1|-|PF2|=2a, 又|PF1|=4|PF2|,所以4|PF2|-|PF2|=2a, 所以|PF2|=a,|PF1|=a, 所以整理得a≥c,所以≤,即e≤, 又e>1,所以1<e≤. (2)当焦点在x轴上时,=,即=, 所以e2=,解得e=; 当焦点在y轴上时,=,即=, 所以e2=,解得e=, 即双曲线的离心率为或. 答案 (1) (2)或 1.双曲线的很多问题与椭圆有相像之处,在学习中要留意应用类比的方法,但肯定要把握好它们的区分和联系. 2.双曲线是具有渐近线的曲线,画双曲线草图时,一般先画出渐近线,要娴熟把握以下两个部分: (1)已知双曲线方程,求它的渐近线; (2)求已知渐近线的双曲线的方程. 假如已知渐近线方程为ax±by=0时,可设双曲线方程为a2x2-b2y2=λ(λ≠0),再利用其他条件确定λ的值,求法的实质是待定系数法. 3.双曲线的几何性质的实质是围绕双曲线中的“六点”(两个焦点、两个顶点、虚轴的两个端点),“四线”(两条对称轴、两近线), “两形”(中心、焦点以及虚轴端点构成的三角形、双曲线上的点与两焦点构成的三角形)来争辩它们之间的关系. 教你审题8——运用双曲线的标准方程及其性质 【典例】 如图,F1,F2分别是双曲线C:-=1(a,b>0)的左,右焦点,B是虚轴的端点,直线F1B❶与 C的两条渐近线分别交于P,Q两点,❷线段PQ的垂直平分线❸与x轴交于点M.若|MF2|=|F1F2|,❹ 则C的离心率是 ( ). A. B. C. D. [审题] 一审:求出直线F1B的方程. 二审:求出点P、Q的坐标及PQ中点坐标. 三审:求出PQ的垂直平分线方程,令y=0得M点的坐标. 四审:由|MF2|=|F1F2|建立关系式,求出离心率. 解析 依题意,知直线F1B的方程为y=x+b,联立方程得点Q, 联立方程得点P, 所以PQ的中点坐标为. 所以PQ的垂直平分线方程为y-=-. 令y=0,得x=c,所以c=3c. 所以a2=2b2=2c2-2a2,即3a2=2c2.所以e=.故选B. 答案 B [反思感悟] 求解双曲线的离心率的关键就是找出双曲线中a,c的关系.对于本例的求解,给出的条件较多,对基础学问的考查较为全面,如双曲线的焦点、虚轴、渐近线及垂直平分线等,但都为直接、连贯的条件,直接依据已知条件就可以求解本题. 【自主体验】 (2021·山东卷)抛物线C1:y=x2(p>0)的焦点与双曲线C2:-y2=1的右焦点的连线交C1于第一象限的点M.若C1在点M处的切线平行于C2的一条渐近线,则p= ( ). A. B. C. D. 解析 抛物线C1:y=x2的标准方程为x2=2py,其焦点为F;双曲线C2:-y2=1的右焦点F′为(2,0),其渐近线方程为y=±x.由y′=x,所以x=,得x=p,所以点M的坐标为.由点F,F′,M三点共线可求p=. 答案 D 基础巩固题组 (建议用时:40分钟) 一、选择题 1.(2022·郑州二模)设F1,F2是双曲线x2-=1的两个焦点,P是双曲线上的一点,且3|PF1|=4|PF2|,则△PF1F2的面积等于( ). A.4 B.8 C.24 D.48 解析 由可解得 又由|F1F2|=10可得△PF1F2是直角三角形, 则S△PF1F2=|PF1|×|PF2|=24. 答案 C 2.(2021·湖北卷)已知0<θ<,则双曲线C1:-=1与C2:-=1的( ). A.实轴长相等 B.虚轴长相等 C.离心率相等 D.焦距相等 解析 ∵0<θ<,∴sin θ<cos θ.由双曲线C1:-=1知实轴长为2sin θ,虚轴长为2cos θ,焦距为2,离心率为.由双曲线C2:-=1知实轴长为2cos θ,虚轴长为2sin θ,焦距为2,离心率为. 答案 D 3.(2022·日照二模)已知双曲线-=1(a>0,b>0)的一个焦点与圆x2+y2-10x=0的圆心重合,且双曲线的离心率等于,则该双曲线的标准方程为( ). A.-=1 B.-=1 C.-=1 D.-=1 解析 由题意知圆心坐标为(5,0),即c=5,又e==,∴a2=5,b2=20,∴双曲线的标准方程为-=1. 答案 A 4.双曲线x2-=1的离心率大于的充分必要条件是( ). A.m> B.m≥1 C.m>1 D.m>2 解析 在双曲线x2-=1中,a=1,b=,则c=,离心率e==>,解得m>1. 答案 C 5.(2022·成都模拟)已知双曲线的方程为-=1(a>0,b>0),双曲线的一个焦点到一条渐近线的距离为c(其中c为双曲线的半焦距长),则该双曲线的离心率为( ). A. B. C. D. 解析 不妨取双曲线的右焦点(c,0),双曲线的渐近线为y=x,即bx-ay=0.则焦点到渐近线的距离为=c,即b=c,从而b2=c2=c2-a2,所以c2=a2,即e2=,所以离心率e=. 答案 A 二、填空题 6.(2022·青岛一模)已知双曲线x2-ky2=1的一个焦点是(,0),则其离心率为________. 解析 由已知,得a=1,c=.∴e==. 答案 7.(2022·广州一模)已知双曲线-=1的右焦点为(,0),则该双曲线的渐近线方程为________. 解析 由题意得c=,所以9+a=c2=13,所以a=4.即双曲线方程为-=1,所以双曲线的渐近线为2x±3y=0. 答案 2x±3y=0 8.(2022·武汉诊断)已知双曲线-=1的一个焦点是(0,2),椭圆-=1的焦距等于4,则n=________. 解析 由于双曲线的焦点(0,2),所以焦点在y轴,所以双曲线的方程为-=1,即a2=-3m,b2=-m,所以c2=-3m-m=-4m=4,解得m=-1,所以椭圆方程为+x2=1,且n>0,椭圆的焦距为4,所以c2=n-1=4或1-n=4,解得n=5或-3(舍去). 答案 5 三、解答题 9.已知椭圆D:+=1与圆M:x2+(y-5)2=9,双曲线G与椭圆D有相同焦点,它的两条渐近线恰好与圆M相切,求双曲线G的方程. 解 椭圆D的两个焦点为F1(-5,0),F2(5,0), 因而双曲线中心在原点,焦点在x轴上,且c=5. 设双曲线G的方程为-=1(a>0,b>0), ∴渐近线方程为bx±ay=0且a2+b2=25, 又圆心M(0,5)到两条渐近线的距离为r=3. ∴=3,得a=3,b=4, ∴双曲线G的方程为-=1. 10.中心在原点,焦点在x轴上的一椭圆与一双曲线有共同的焦点F1,F2,且|F1F2|=2,椭圆的长半轴与双曲线半实轴之差为4,离心率之比为3∶7. (1)求这两曲线方程; (2)若P为这两曲线的一个交点,求cos∠F1PF2的值. 解 (1)由已知:c=,设椭圆长、短半轴长分别为a,b,双曲线半实、虚轴长分别为m,n, 则解得a=7,m=3.∴b=6,n=2. ∴椭圆方程为+=1,双曲线方程为-=1. (2)不妨设F1,F2分别为左、右焦点,P是第一象限的一个交点,则|PF1|+|PF2|=14,|PF1|-|PF2|=6, 所以|PF1|=10,|PF2|=4.又|F1F2|=2, ∴cos∠F1PF2= ==. 力量提升题组 (建议用时:25分钟) 一、选择题 1.(2022·焦作二模)直线y=x与双曲线C:-=1(a>0,b>0)左右两支分别交于M、N两点,F是双曲线C的右焦点,O是坐标原点,若|FO|=|MO|,则双曲线的离心率等于( ). A.+ B.+1 C.+1 D.2 解析 由题意知|MO|=|NO|=|FO|,∴△MFN为直角三角形,且∠MFN=90°,取左焦点为F0,连接NF0,MF0,由双曲线的对称性知,四边形NFMF0为平行四边形. 又∵∠MFN=90°,∴四边形NFMF0为矩形, ∴|MN|=|F0F|=2c,又∵直线MN的倾斜角为60°,即∠NOF=60°, ∴∠NMF=30°,∴|NF|=|MF0|=c,|MF|=c, 由双曲线定义知|MF|-|MF0|=c-c=2a, ∴e==+1. 答案 B 2.(2022·临沂联考)已知点F是双曲线-=1(a>0,b>0)的左焦点,点E是该双曲线的右顶点,过点F且垂直于x轴的直线与双曲线交于A,B两点,若△ABE是锐角三角形,则该双曲线的离心率e的取值范围是( ). A.(1,2) B.(,2) C.(,2) D.(2,3) 解析 由题意知,△ABE为等腰三角形.若△ABE是锐角三角形,则只需要∠AEB为锐角.依据对称性,只要∠AEF<即可.直线AB的方程为x=-c,代入双曲线方程得y2=,取点A,则|AF|=,|EF|=a+c,只要|AF|<|EF|就能使∠AEF<,即<a+c,即b2<a2+ac,即c2-ac-2a2<0,即e2-e-2<0,即-1<e<2.又e>1,故1<e<2. 答案 A 二、填空题 3.如图,双曲线-=1(a,b>0)的两顶点为A1,A2,虚轴两端点为B1,B2, 两焦点为F1,F2.若以A1A2为直径的圆内切于菱形F1B1F2B2,切点分别为A,B,C,D.则 (1)双曲线的离心率e=________; (2)菱形F1B1F2B2的面积S1与矩形ABCD的面积S2的比值=________. 解析 (1)由△B2OF2的面积可得a =bc,∴a4-3a2c2+c4=0,∴e4-3e2+1=0,∴e2=,∴e=. (2)设∠B2F1O=θ,则sin θ=,cos θ=,====e2-=. 答案 (1) (2) 三、解答题 4.(2022·湛江二模)已知双曲线-=1(a>0,b>0)的 右焦点为F(c,0). (1)若双曲线的一条渐近线方程为y=x且c=2,求双曲线的方程; (2)以原点O为圆心,c为半径作圆,该圆与双曲线在第一象限的交点为A,过A作圆的切线,斜率为-,求双曲线的离心率. 解 (1)∵双曲线的渐近线为y=±x,∴a=b, ∴c2=a2+b2=2a2=4,∴a2=b2=2, ∴双曲线方程为-=1. (2)设点A的坐标为(x0,y0), ∴直线AO的斜率满足·(-)=-1, ∴x0=y0,① 依题意,圆的方程为x2+y2=c2, 将①代入圆的方程,得3y+y=c2,即y0=c, ∴x0=c,∴点A的坐标为,代入双曲线方程,得-=1,即b2c2-a2c2=a2b2,② 又∵a2+b2=c2,∴将b2=c2-a2代入②式,整理得 c4-2a2c2+a4=0, ∴34-82+4=0,∴(3e2-2)(e2-2)=0, ∵e>1,∴e=.∴双曲线的离心率为.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 创新设计 创新 设计 2021 年高 数学 四川 专用 一轮 复习 考点 突破 双曲线
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文