2021年高考数学(四川专用-理)一轮复习考点突破:选修4-4-第1讲-坐标系.docx
《2021年高考数学(四川专用-理)一轮复习考点突破:选修4-4-第1讲-坐标系.docx》由会员分享,可在线阅读,更多相关《2021年高考数学(四川专用-理)一轮复习考点突破:选修4-4-第1讲-坐标系.docx(6页珍藏版)》请在咨信网上搜索。
1、第1讲坐标系最新考纲1理解坐标系的作用了解在平面直角坐标系伸缩变换作用下平面图形的变化状况2会在极坐标系中用极坐标刻画点的位置,能进行极坐标和直角坐标的互化3能在极坐标系中给出简洁图形(如过极点的直线、过极点或圆心在极点的圆)表示的极坐标方程.知 识 梳 理1极坐标系(1)极坐标系的建立:在平面上取一个定点O,叫做极点,从O点引一条射线Ox,叫做极轴,再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就确定了一个极坐标系设M是平面内一点,极点O与点M的距离OM叫做点M的极径,记为,以极轴Ox为始边,射线OM为终边的角叫做点M的极角,记为.有序数对(,)叫做点M的
2、极坐标,记作M(,)(2)极坐标与直角坐标的关系:把直角坐标系的原点作为极点,x轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,设M是平面内任意一点,它的直角坐标是(x,y),极坐标为(,),则它们之间的关系为xcos ,ysin_.另一种关系为2x2y2,tan .2直线的极坐标方程若直线过点M(0,0),且极轴到此直线的角为,则它的方程为:sin()0sin (0)几个特殊位置的直线的极坐标方程(1)直线过极点:0和0;(2)直线过点M(a,0)且垂直于极轴:cos a;(3)直线过M且平行于极轴:sin b.3圆的极坐标方程若圆心为M(0,0),半径为r的圆方程为220cos(0)
3、r20.几个特殊位置的圆的极坐标方程(1)当圆心位于极点,半径为r:r;(2)当圆心位于M(a,0),半径为a:2acos_;(3)当圆心位于M,半径为a:2asin_.诊 断 自 测1点P的直角坐标为(,),那么它的极坐标可表示为_解析直接利用极坐标与直角坐标的互化公式答案2若曲线的极坐标方程为2sin 4cos ,以极点为原点,极轴为x轴正半轴建立直角坐标系,则该曲线的直角坐标方程为_解析2sin 4cos ,22sin 4cos .x2y22y4x,即x2y22y4x0.答案x2y24x2y03(2022西安五校一模)在极坐标系(,)(02)中,曲线2sin 与cos 1的交点的极坐标为
4、_ 解析2sin 的直角坐标方程为x2y22y0,cos 1的直角坐标方程为x1,联立方程,得解得即两曲线的交点为(1,1),又02,因此这两条曲线的交点的极坐标为.答案4在极坐标系中,直线l的方程为sin 3,则点到直线l的距离为_解析直线l的极坐标方程可化为y3,点化为直角坐标为(,1),点到直线l的距离为2.答案25在极坐标系中,圆4sin 的圆心到直线(R)的距离是_解析将极坐标方程转化为平面直角坐标系中的一般方程求解,极坐标系中的圆4sin 转化为平面直角坐标系中的一般方程为:x2y24y,即x2(y2)24,其圆心为(0,2),直线转化为平面直角坐标系中的方程为yx,即x3y0.圆
5、心(0,2)到直线x3y0的距离为.答案考点一极坐标与直角坐标的互化【例1】 (1)把点M的极坐标化成直角坐标;(2)把点M的直角坐标(,1)化成极坐标解(1)x5cos ,y5sin ,点M的直角坐标是.(2)2,tan .点M在第三象限,0,最小正角.因此,点M的极坐标是.规律方法 (1)在由点的直角坐标化为极坐标时,肯定要留意点所在的象限和极角的范围,否则点的极坐标将不唯一(2)在曲线的方程进行互化时,肯定要留意变量的范围要留意转化的等价性【训练1】 (1)把点M的极坐标化成直角坐标;(2)把点P的直角坐标(,)化成极坐标(0,02)解(1)x8cos 4,y8sin 4,因此,点M的直
6、角坐标是(4,4)(2)2,tan ,又由于点在第四象限,得.因此,点P的极坐标为.考点二直角坐标方程与极坐标方程的互化【例2】 在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为cos1,M,N分别为曲线C与x轴,y轴的交点(1)写出曲线C的直角坐标方程,并求M,N的极坐标;(2)设M,N的中点为P,求直线OP的极坐标方程解(1)cos1,cos cos sin sin 1.又,xy1.即曲线C的直角坐标方程为xy20.令y0,则x2;令x0,则y.M(2,0),N.M的极坐标为(2,0),N的极坐标为.(2)M,N连线的中点P的直角坐标为,P的极角为.直线
7、OP的极坐标方程为(R)规律方法 直角坐标方程与极坐标方程的互化,关键要把握好互化公式,争辩极坐标系下图形的性质,可转化为我们生疏的直角坐标系的情境【训练2】 O1和O2的极坐标方程分别为4cos ,4sin .(1)把O1和O2的极坐标方程化为直角坐标方程;(2)求经过O1,O2交点的直线的直角坐标方程解以极点的原点,极轴为x轴正半轴建立平面直角坐标系,两坐标系中取相同的长度单位(1)4cos ,两边同乘以,得24cos ;4sin ,两边同乘以,得24sin .由cos x,sin y,2x2y2,得O1,O2的直角坐标方程分别为x2y24x0和x2y24y0.(2)由得4x4y0,即xy
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 创新设计 创新 设计 2021 年高 数学 四川 专用 一轮 复习 考点 突破 选修 坐标系
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。