2021高考数学三轮冲刺-三角函数课时提升训练(4).docx
《2021高考数学三轮冲刺-三角函数课时提升训练(4).docx》由会员分享,可在线阅读,更多相关《2021高考数学三轮冲刺-三角函数课时提升训练(4).docx(18页珍藏版)》请在咨信网上搜索。
1、三角函数课时提升训练(4)评卷人得分一、填空题(每空? 分,共? 分)1、给出下列命题:存在实数,使sincos=1成立; 存在实数,使sin+cos=成立; 函数是偶函数; 方程是函数的图象的一条对称轴方程;若是第一象限角,且,则tgtg。其中正确命题的序号是_ 2、设函数的最小正周期为,且其图象关于直线对称, 则在下面四个结论: 图象关于点对称; 图象关于点对称; 在上是增函数; 在上是增函数中, 全部正确结论的编号为 3、函数有最大值,最小值,则实数 的值为_4、若,则的最大值为_5、下列命题中:(1)的充分不必要条件;(2)函数的最小正周期是;(3)中,若,则为钝角三角形;(4)若,则
2、函数的图像的一条对称轴方程为;其中是真命题的为 6、已知函数,.设是函数图象的一条对称轴,则的值等于 7、函数f(x)= 2sin(2x+)-cos(2x)+ cos(2x+),给出下列4个命题,其中正确命题的序号是 。直线x=是函数图像的一条对称轴;函数f(x)的图像可由函数y=sin2x的图像向左平移个单位而得到;在区间上是减函数;若,则是的整数倍;8、设函数,若是奇函数,则的一个可能值是 9、已知,则等于 . 10、设函数,其中,将的最小值记为的单调递增区间为 .11、设的内角所对的边长分别为,且,则_评卷人得分二、简答题(每空? 分,共? 分)12、已知函数(,)的图像与轴的交点为,它
3、在轴右侧的第一个最高点和第一个最低点的坐标分别为和(1)求函数的解析式;(2)若锐角满足,求的值13、设函数,它的一个最高点为以及相邻的一个零点是。()求的解析式; ()求的值域14、已知函数(1)求函数的最小正周期;(2)若存在,使不等式成立,求实数m的取值范围. 15、已知函数 ,若对恒成立,且。(1)求的解析式; (2)当时,求的单调区间。16、已知函数(I)求的最小正周期和对称中心;(II)求的单调递减区间;(III)当时,求函数的最大值及取得最大值时x的值 17、定义在区间上的函数的图象关于直线对称,当时函数图象如图所示. ()求函数在的表达式;()求方程的解;()是否存在常数的值,
4、使得在上恒成立;若存在,求出 的取值范围;若不存在,请说明理由.18、已知函数的图象与轴相交于点M,且该函数的最小正周期为(1) 求和的值; (2)已知点,点是该函数图象上一点,点是的中点,当,时,求的值。19、已知点在函数的图象上,直线、是图象的任意两条对称轴,且的最小值为.(1)求函数的单递增区间和其图象的对称中心坐标;(2)设,若,求实数的取值范围.20、 已知函数.()求的最小正周期;()若函数的图象是由的图象向右平移个单位长度得到的,当时,求的最大值和最小值.21、设平面对量,函数。()求函数的值域和函数的单调递增区间; ()当,且时,求的值.22、函数.()在中,求的值;()求函数
5、的最小正周期及其图象的全部对称轴的方程.23、已知,函数,当时, 。(1)求常数的值;(2)设且,求的单调区间。24、在中,(1)求大小;(2)当时,求函数的最值25、若实数、满足,则称比接近.(1)若比3接近0,求的取值范围;(2)对任意两个不相等的正数、,证明:比接近;(3)已知函数的定义域.任取,等于和中接近0的那个值.写出函数的解析式,并指出它的奇偶性、最小正周期、最小值和单调性(结论不要求证明).26、已知奇函数f(x)在上有意义,且在上单调递减,。又。若集合(1)x取何值时,f(x)0;(2)27、已知函数(1)求函数的最小正周期和值域;(2)若为其次象限角,且,求的值28、函数的
6、部分图象如图示,将y=f(x)的图象向右平移个单位后得到函数y=g(x)的图象.(I )求函数y=g(x)的解析式;(II)已知ABC中三个内角A,B, C的对边分别为a,b,c,且满足+2sinAsinB,且C=,c=3,求ABC的面积.29、已知函数,将其图象向左移个单位,并向上移个单位,得到函数的图象.(1)求实数的值;(2)设函数,求函数的单调递增区间和最值.30、已知向量()求f(x)的最小正周期T;(2)已知a,b,c分别为ABC内角A,B,C的对边,A为锐角,上的最大值,求A,b和ABC的面积.31、已知函数f(x)=Asin(x+)(A0,0,|0),在同一周期内,当时,f(x
7、)取得最大值3;当时,f(x)取得最小值3()求函数f(x)的解析式;()求函数f(x)的单调递减区间;()若时,函数h(x)=2f(x)+1m有两个零点,求实数m的取值范围32、已知函数(1)求函数的最小正周期和图象的对称轴方程(2)求函数在区间上的值域33、已知函数,()求函数的最小正周期;()若,求的值域.34、在中,分别为内角A、B、C的对边,且(1)求角A的大小;(2)若中三边长构成公差为4的等差数列,求的面积35、已知, 且.(1)求;(2)当时,求函数的值域.36、已知、为的三内角,且其对边分别为、,若()求;(4分)()若,求的面积(6分)37、已知函数.(I)求函数的单调减区
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 高考 数学 三轮 冲刺 三角函数 课时 提升 训练
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。