2021高考数学(福建-理)一轮作业:10.9离散型随机变量的均值与方差.docx
《2021高考数学(福建-理)一轮作业:10.9离散型随机变量的均值与方差.docx》由会员分享,可在线阅读,更多相关《2021高考数学(福建-理)一轮作业:10.9离散型随机变量的均值与方差.docx(4页珍藏版)》请在咨信网上搜索。
离散型随机变量的均值与方差 一、选择题 1.若随机变量X的分布列如下表,则E(X)等于( ) X 0 1 2 3 4 5 P 2x 3x 7x 2x 3x x A. B. C. D. 解析 由分布列的性质可得2x+3x+7x+2x+3x+x=1,∴x=.∴E(X)=0×2x+1×3x+2×7x+3×2x+4×3x+5x=40x=. 答案 C 2.某班有的同学数学成果优秀,假如从班中随机地找出5名同学,那么其中数学成果优秀的同学数X~B,则E(2X+1)等于( ) A. B. C.3 D. 解析 由于X~B,所以E(X)=,所以E(2X+1)=2E(X)+1=2×+1=. 答案 D 3.已知随机变量X+η=8,若X~B(10,0.6),则E(η),D(η)分别是( ). A.6和2.4 B.2和2.4 C.2和5.6 D.6和5.6 解析 若两个随机变量η,X满足一次关系式η=aX+b(a,b为常数),当已知E(X)、D(X)时,则有E(η)=aE(X)+b,D(η)=a2D(X).由已知随机变量X+η=8,所以有η=8-X.因此,求得E(η)=8-E(X)=8-10×0.6=2, D(η)=(-1)2D(X)=10×0.6×0.4=2.4. 答案 B 4.已知X的分布列为 X -1 0 1 P 则在下列式子中:①E(X)=-;②D(X)=; ③P(X=0)=. 正确的个数是( ). A.0 B.1 C.2 D.3 解析 E(X)=(-1)×+1×=-,故①正确. D(X)=2×+2×+2×=,故②不正确. 由分布列知③正确. 答案 C 5.一个篮球运动员投篮一次得3分的概率为a,得2分的概率为b,不得分的概率为c,a、b、c∈(0,1),且无其他得分状况,已知他投篮一次得分的数学期望为1,则ab的最大值为( ) A. B. C. D. 解析 依题意得3a+2b+0×c=1,∵a>0,b>0,∴3a+2b≥2, 即2≤1,∴ab≤.当且仅当3a=2b即a=,b=时等式成立. 答案 B 6.某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需要再补种2粒,补种的种子数记为X,则X的数学期望为( ). A.100 B.200 C.300 D.400 解析 种子发芽率为0.9,不发芽率为0.1,每粒种子发芽与否相互独立,故设没有发芽的种子数为ξ,则ξ~B(1 000,0.1),∴E(ξ)=1 000×0.1=100, 故需补种的期望为E(X)=2·E(ξ)=200. 答案 B 7.签盒中有编号为1、2、3、4、5、6的六支签,从中任意取3支,设X为这3支签的号码之中最大的一个,则X的数学期望为( ). A.5 B.5.25 C.5.8 D.4.6 解析 由题意可知,X可以取3,4,5,6, P(X=3)==,P(X=4)==, P(X=5)==,P(X=6)==. 由数学期望的定义可求得E(X)=5.25. 答案 B 二、填空题 8. 某毕业生参与人才聘请会,分别向甲、乙、丙三个公司投递了个人简历,假定该毕业生得到甲公司面试的概率为,得到乙、丙两公司面试的概率为,且三个公司是否让其面试是相互独立的。记为该毕业生得到面试得公司个数。若,则随机变量的数学期望 答案 9.已知离散型随机变量X的分布列如右表,若E(X)=0,D(X)=1,则a=________,b=________. 解析 由题意知解得 答案 10.马老师从课本上抄录一个随机变量ξ的概率分布列如下表: ξ 1 2 3 P ? ! ? 请小牛同学计算ξ的数学期望.尽管“!”处完全无法看清,且两个“?”处字迹模糊,但能断定这两个“?”处的数值相同.据此,小牛给出了正确答案E(ξ)=________. 解析 令“?”为a,“!”为b,则2a+b=1.又E(ξ)=a+2b+3a=2(2a+b)=2. 答案 2 11.袋中有大小、外形相同的红、黑球各一个,每次摸取一个球登记颜色后放回,现连续取球8次,记取出红球的次数为X,则X的方差D(X)=________. 解析 每次取球时,红球被取出的概率为,8次取球看做8次独立重复试验,红球毁灭的次数X~B,故D(X)=8××=2. 答案 2 12.罐中有6个红球,4个白球,从中任取1球,记住颜色后再放回,连续摸取4次,设ξ为取得红球的次数,则ξ的期望E(ξ)=________. 解析 由于是有放回地摸球,所以每次摸球(试验)摸得红球(成功)的概率均为,连续摸4次(做4次试验),ξ为取得红球(成功)的次数,则ξ~B, 从而有E(ξ)=np=4×=. 答案 三、解答题 13.某品牌汽车的4S店,对最近100位接受分期付款的购车者进行了统计,统计结果如下表所示:已知分3期付款的频率为0.2,且4S店经销一辆该品牌的汽车,顾客分1期付款,其利润为1万元;分2期或3期付款其利润为1.5万元;分4期或5期付款,其利润为2万元.用η表示经销一辆汽车的利润. 付款方式 分1期 分2期 分3期 分4期 分5期 频数 40 20 a 10 b (1)若以频率作为概率,求大事A:“购买该品牌汽车的3位顾客中,至多有1位接受分3期付款”的概率P(A); (2)求η的分布列及其数学期望E(η). 解析 (1)由题意可知“购买该品牌汽车的3位顾客中有1位接受分3期付款”的概率为0.2,所以 P(A)=0.83+C×0.2×(1-0.2)2=0.896. (2)由=0.2得a=20, ∵40+20+a+10+b=100,∴b=10. 记分期付款的期数为ξ,依题意得: P(ξ=1)==0.4,P(ξ=2)==0.2,P(ξ=3)==0.2,P(ξ=4)==0.1, P(ξ=5)==0.1. 由题意知η的可能取值为:1,1.5,2(单位:万元). P(η=1)=P(ξ=1)=0.4, P(η=1.5)=P(ξ=2)+P(ξ=3)=0.4; P(η=2)=P(ξ=4)+P(ξ=5)=0.1+0.1=0.2. ∴η的分布列为: η 1 1.5 2 P 0.4 0.4 0.2 ∴η的数学期望E(η)=1×0.4+1.5×0.4+2×0.2=1.4(万元). 14.如图,A地到火车站共有两条路径L1和L2,据统计,通过两条路径所用的时间互不影响,所用时间落在各时间段内的频率如下表: 时间(分钟) 10~20 20~30 30~40 40~50 50~60 L1的频率 0.1 0.2 0.3 0.2 0.2 L2的频率 0 0.1 0.4 0.4 0.1 现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站. (1)为了尽最大可能在各自允许的时间内赶到火车站,甲和乙应如何选择各自的路径? (2)用X表示甲、乙两人中在允许的时间内能赶到火车站的人数,针对(1)的选择方案,求X的分布列和数学期望. 解析 (1)Ai表示大事“甲选择路径Li时,40分钟内赶到火车站”,Bi表示大事“乙选择路径Li时,50分钟内赶到火车站”,i=1,2. 用频率估量相应的概率可得 P(A1)=0.1+0.2+0.3=0.6,P(A2)=0.1+0.4=0.5, ∵P(A1)>P(A2),∴甲应选择L1; P(B1)=0.1+0.2+0.3+0.2=0.8,P(B2)=0.1+0.4+0.4=0.9, ∵P(B2)>P(B1),∴乙应选择L2. (2)A,B分别表示针对(1)的选择方案,甲、乙在各自允许的时间内赶到火车站, 由(1)知P(A)=0.6,P(B)=0.9,又由题意知,A,B独立, ∴P(X=0)=P()=P()P()=0.4×0.1=0.04, P(X=1)=P(B+A)=P()P(B)+P(A)P() =0.4×0.9+0.6×0.1=0.42, P(X=2)=P(AB)=P(A)P(B)=0.6×0.9=0.54. ∴X的分布列为 X 0 1 2 P 0.04 0.42 0.54 ∴E(X)=0×0.04+1×0.42+2×0.54=1.5. 15.某省示范高中为了推动新课程改革,满足不同层次同学的需求,打算从高一班级开头,在每周的周一、周三、周五的课外活动期间同时开设数学、物理、化学、生物和信息技术辅导讲座,每位有爱好的同学可以在期间的任何一天参与任何一门科目的辅导讲座,也可以放弃任何一门科目的辅导讲座.(规定:各科达到预先设定的人数时称为满座,否则称为不满座)统计数据表明,各学科讲座各天的满座的概率如下表: 信息技术 生物 化学 物理 数学 周一 周三 周五 (1)求数学辅导讲座在周一、周三、周五都不满座的概率; (2)设周三各辅导讲座满座的科目数为ξ,求随机变量ξ的分布列和数学期望. 解析 (1)设数学辅导讲座在周一、周三、周五都不满座为大事A, 则P(A)==. (2)ξ的可能取值为0,1,2,3,4,5. P(ξ=0)=4×=; P(ξ=1)=C××3×+4×=; P(ξ=2)=C×2×2×+C××3×=; P(ξ=3)=C×3××+C×2×2×=; P(ξ=4)=4×+C×3××=; P(ξ=5)=4×=. 所以,随机变量ξ的分布列如下: ξ 0 1 2 3 4 5 P 故E(ξ)=0×+1×+2×+3×+4×+5×=. 16.某城市有甲、乙、丙3个旅游景点,一位游客巡游这3个景点的概率分别是0.4、0.5、0.6,且游客是否巡游哪个景点互不影响,用X表示该游客离开该城市时巡游的景点数与没有巡游的景点数之差的确定值. (1)求X的分布列及期望; (2)记“f(x)=2Xx+4在[-3,-1]上存在x0,使f(x0)=0”为大事A,求大事A的概率. 解析 (1)设游客巡游甲、乙、丙景点分别记为大事A1、A2、A3,已知A1、A2、A3相互独立,且P(A1)=0.4,P(A2)=0.5,P(A3)=0.6.游客巡游的景点数可能取值为0、1、2、3,相应的游客没有巡游的景点数可能取值为3、2、1、0, 所以X的可能取值为1、3.则P(X=3)=P(A1A2A3)+P( ) =P(A1)·P(A2)·P(A3)+P()·P()·P() =2×0.4×0.5×0.6=0.24. P(X=1)=1-0.24=0.76. 所以分布列为: X 1 3 P 0.76 0.24 ∴E(X)=1×0.76+3×0.24=1.48. (2)∵f(x)=2Xx+4在[-3,-1]上存在x0,使得f(x0)=0, ∴f(-3)·f(-1)≤0,即(-6X+4)(-2X+4)≤0, 解得:≤X≤2. ∴P(A)=P=P(X=1)=0.76.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 高考 数学 福建 一轮 作业 10.9 离散 随机变量 均值 方差
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文