分享
分销 收藏 举报 申诉 / 4
播放页_导航下方通栏广告

类型2021高考数学(广东专用-理)一轮题库:第9章-第4讲--椭圆.docx

  • 上传人:精***
  • 文档编号:3813241
  • 上传时间:2024-07-20
  • 格式:DOCX
  • 页数:4
  • 大小:80.61KB
  • 下载积分:5 金币
  • 播放页_非在线预览资源立即下载上方广告
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2021 高考 数学 广东 专用 一轮 题库 椭圆
    资源描述:
    第4讲 椭 圆 一、选择题 1.中心在原点,焦点在x轴上,若长轴长为18,且两个焦点恰好将长轴三等分,则此椭圆的方程是(  ). A.+=1 B.+=1 C.+=1 D.+=1 解析 依题意知:2a=18,∴a=9,2c=×2a,∴c=3, ∴b2=a2-c2=81-9=72,∴椭圆方程为+=1. 答案 A 2.椭圆+=1(a>b>0)的左、右顶点分别是A,B,左、右焦点分别是F1,F2.若|AF1|,|F1F2|,|F1B|成等比数列,则此椭圆的离心率为 (  ). A. B. C. D.-2 解析 由于A,B为左、右顶点,F1,F2为左、右焦点,所以|AF1|=a-c,|F1F2|=2c,|F1B|=a+c. 又由于|AF1|,|F1F2|,|F1B|成等比数列, 所以(a-c)(a+c)=4c2,即a2=5c2. 所以离心率e==,故选B. 答案 B 3.已知椭圆x2+my2=1的离心率e∈,则实数m的取值范围是 (  ). A. B. C.∪ D.∪ 解析 椭圆标准方程为x2+=1.当m>1时,e2=1-∈,解得m>;当0<m<1时,e2==1-m∈,解得0<m<,故实数m的取值范围是∪. 答案 C 4.设F1、F2分别是椭圆+y2=1的左、右焦点,P是第一象限内该椭圆上的一点,且PF1⊥PF2,则点P的横坐标为(  ). A.1 B. C.2 D. 解析 由题意知,点P即为圆x2+y2=3与椭圆+y2=1在第一象限的交点,解方程组得点P的横坐标为. 答案 D 5.椭圆+=1(a>b>0)的两顶点为A(a,0),B(0,b),且左焦点为F,△FAB是以角B为直角的直角三角形,则椭圆的离心率e为(  ) A. B. C. D. 解析 依据已知a2+b2+a2=(a+c)2,即c2+ac-a2=0,即e2+e-1=0,解得e=,故所求的椭圆的离心率为. 答案 B 6.已知椭圆C:+=1(a>b>0)的离心率为.双曲线x2-y2=1的渐近线与椭圆C有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C的方程为 (  ). A.+=1 B.+=1 C.+=1 D.+=1 解析 由于椭圆的离心率为,所以e==,c2=a2,c2=a2=a2-b2,所以b2=a2,即a2=4b2.双曲线的渐近线方程为y=±x,代入椭圆方程得+=1,即+==1,所以x2=b2,x=±b,y2=b2,y=±b,则在第一象限双曲线的渐近线与椭圆C的交点坐标为,所以四边形的面积为4×b×b=b2=16,所以b2=5,所以椭圆方程为+=1. 答案 D 二、填空题 7.设F1、F2分别是椭圆+=1的左、右焦点,P为椭圆上一点,M是F1P的中点,|OM|=3,则P点到椭圆左焦点的距离为________. 解析 由题意知|OM|=|PF2|=3,∴|PF2|=6.∴|PF1|=2×5-6=4. 答案 4 8.在等差数列{an}中,a2+a3=11,a2+a3+a4=21,则椭圆C:+=1的离心率为________. 解析 由题意,得a4=10,设公差为d,则a3+a2=(10-d)+(10-2d)=20-3d=11,∴d=3,∴a5=a4+d=13,a6=a4+2d=16>a5,∴e==. 答案  9. 椭圆=1的焦点为F1和F2,点P在椭圆上.假如线段PF1的中点在y轴上,那么|PF1|是|PF2|的_____倍. 解析 不妨设F1(-3,0),F2(3,0)由条件得P(3,±),即|PF2|=,|PF1|=,因此|PF1|=7|PF2|. 答案 7 10.如图,∠OFB=,△ABF的面积为2-,则以OA为长半轴,OB为短半轴,F为一个焦点的椭圆方程为________. 解析 设标准方程为+=1(a>b>0), 由题可知,|OF|=c,|OB|=b,∴|BF|=a, ∵∠OFB=,∴=,a=2b. S△ABF=·|AF|·|BO|=(a-c)·b =(2b-b)b=2-, ∴b2=2,∴b=,∴a=2,∴椭圆的方程为+=1. 答案 +=1 三、解答题 11.如图,设P是圆x2+y2=25上的动点,点D是P在x轴上的投影,M为PD上一点,且|MD|=|PD|. (1)当P在圆上运动时,求点M的轨迹C的方程; (2)求过点(3,0)且斜率为的直线被C所截线段的长度. 解 (1)设M的坐标为(x,y),P的坐标为(xP,yP), 由已知得 ∵P在圆上,∴x2+2=25, 即C的方程为+=1. (2)过点(3,0)且斜率为的直线方程为y=(x-3), 设直线与C的交点为A(x1,y1),B(x2,y2), 将直线方程y=(x-3)代入C的方程,得 +=1, 即x2-3x-8=0. ∴x1=,x2=. ∴线段AB的长度为|AB|= = = =. 12.设F1,F2分别为椭圆C:+=1(a>b>0)的左、右焦点,过F2的直线l与椭圆C相交于A,B两点,直线l的倾斜角为60°,F1到直线l的距离为2. (1)求椭圆C的焦距; (2)假如=2,求椭圆C的方程. 解 (1)设椭圆C的焦距为2c,由已知可得F1到直线l的距离c=2,故c=2. 所以椭圆C的焦距为4. (2)设A(x1,y1),B(x2,y2),由=2及l的倾斜角为60°,知y1<0,y2>0, 直线l的方程为y=(x-2). 由消去x, 整理得(3a2+b2)y2+4b2y-3b4=0. 解得y1=,y2=. 由于=2,所以-y1=2y2, 即=2·,解得a=3. 而a2-b2=4,所以b2=5. 故椭圆C的方程为+=1. 13. 如图,在平面直角坐标系xOy中,椭圆C:+=1(a>b>0)的离心率为,以原点为圆心,椭圆C的短半轴长为半径的圆与直线x-y+2=0相切. (1)求椭圆C的方程; (2)已知点P(0,1),Q(0,2).设M,N是椭圆C上关于y轴对称的不同两点,直线PM与QN相交于点T.求证:点T在椭圆C上. (1)解 由题意知,b==. 由于离心率e==,所以= =. 所以a=2. 所以椭圆C的方程为+=1. (2)证明 由题意可设M,N的坐标分别为(x0,y0),(-x0,y0), 则直线PM的方程为y=x+1, ① 直线QN的方程为y=x+2. ② 法一 联立①②解得x=,y=, 即T.由+=1,可得x=8-4y. 由于2+2= ====1, 所以点T的坐标满足椭圆C的方程,即点T在椭圆C上. 法二 设T(x,y),联立①②解得x0=,y0=. 由于+=1,所以2+2=1. 整理得+=(2y-3)2, 所以+-12y+8=4y2-12y+9,即+=1. 所以点T坐标满足椭圆C的方程,即点T在椭圆C上. 14.如图,设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左、右焦点分别为F1,F2,线段OF1,OF2的中点分别为B1,B2,且△AB1B2是面积为4的直角三角形. (1)求该椭圆的离心率和标准方程; (2)过B1作直线l交椭圆于P,Q两点,使PB2⊥QB2,求直线l的方程. 解 (1) 如图,设所求椭圆的标准方程为+=1(a>b>0),右焦点为F2(c,0). 因△AB1B2是直角三角形, 又|AB1|=|AB2|, 故∠B1AB2为直角, 因此|OA|=|OB2|,得b=. 结合c2=a2-b2得4b2=a2-b2, 故a2=5b2,c2=4b2,所以离心率e==. 在Rt△AB1B2中,OA⊥B1B2, 故S△AB1B2=·|B1B2|·|OA|=|OB2|·|OA|=·b=b2.由题设条件S△AB1B2=4得b2=4,从而a2=5b2=20.因此所求椭圆的标准方程为:+=1. (2)由(1)知B1(-2,0),B2(2,0).由题意知直线l的倾斜角不为0,故可设直线l的方程为x=my-2.代入椭圆方程得(m2+5)y2-4my-16=0. 设P(x1,y1),Q(x2,y2),则y1,y2是上面方程的两根, 因此y1+y2=,y1·y2=-, 又=(x1-2,y1),=(x2-2,y2), 所以·=(x1-2)(x2-2)+y1y2 =(my1-4)(my2-4)+y1y2=(m2+1)y1y2-4m(y1+y2)+16 =--+16=-, 由PB2⊥QB2,得·=0, 即16m2-64=0,解得m=±2. 所以满足条件的直线有两条,其方程分别为x+2y+2=0和x-2y+2=0.
    展开阅读全文
    提示  咨信网温馨提示:
    1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
    5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

    开通VIP折扣优惠下载文档

    自信AI创作助手
    关于本文
    本文标题:2021高考数学(广东专用-理)一轮题库:第9章-第4讲--椭圆.docx
    链接地址:https://www.zixin.com.cn/doc/3813241.html
    页脚通栏广告

    Copyright ©2010-2026   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:0574-28810668    微信客服:咨信网客服    投诉电话:18658249818   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   


    关注我们 :微信公众号  抖音  微博  LOFTER               

    自信网络  |  ZixinNetwork