2022版《名师金典》高考数学(理科)大一轮复习课时检测65离散型随机变量的均值与方差、正态分布-.docx
《2022版《名师金典》高考数学(理科)大一轮复习课时检测65离散型随机变量的均值与方差、正态分布-.docx》由会员分享,可在线阅读,更多相关《2022版《名师金典》高考数学(理科)大一轮复习课时检测65离散型随机变量的均值与方差、正态分布-.docx(2页珍藏版)》请在咨信网上搜索。
课时限时检测(六十五) 离散型随机变量的均值与方差、正态分布 (时间:60分钟 满分:80分)一、选择题(每小题5分,共30分) 1.设随机变量ξ听从正态分布N(2,9),若P(ξ>c+1)=P(ξ<c-1),则c=( ) A.1 B.2 C.3 D.4 【答案】 B 2.已知X的分布列为 X -1 0 1 P 则在下列式子中:①E(X)=-;②D(X)=;③P(X=0)=. 正确的个数是( ) A.0 B.1 C.2 D.3 【答案】 C 3.已知随机变量X+η=8,若X~B(10,0.6),则E(η),D(η)分别是( ) A.6和2.4 B.2和2.4 C.2和5.6 D.6和5.6 【答案】 B 4.某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X,则X的数学期望为( ) A.100 B.200 C.300 D.400 【答案】 B 5.已知随机变量ξ听从正态分布N(0,σ2).若P(ξ>2)=0.023,则P(-2≤ξ≤2)=( ) A.0.477 B.0.628 C.0.954 D.0.977 【答案】 C 6.甲、乙两人独立地从六门选修课程中任选三门进行学习,记两人所选课程相同的门数为ξ,则E(ξ)为( ) A.1 B.1.5 C.2 D.2.5 【答案】 B 二、填空题(每小题5分,共15分) 7.在某项测量中,测量结果ξ听从正态分布N(1,σ2)(σ>0).若ξ在(0,1)内取值的概率为0.4,则ξ在(0,2)内取值的概率为________. 【答案】 0.8 8.已知X的分布列为 X -1 0 1 P a 设Y=2X+1,则Y的数学期望E(Y)的值是________. 【答案】 9.某公司有5万元资金用于投资开发项目,假如成功,一年后可获利12%;假如失败,一年后将丢失全部资金的50%.下表是过去200例类似项目开发的实施结果: 投资成功 投资失败 192例 8例 则该公司一年后估量可获收益的期望是________元. 【答案】 4 760 三、解答题(本大题共3小题,共35分) 10.(10分)(2021·湖北高考改编)假设每天从甲地去乙地的旅客人数X是听从正态分布N(800,502)的随机变量.记一天中从甲地去乙地的旅客人数不超过900的概率为p0.求p0的值. (参考数据:若X~N(μ,σ2),有P(μ-σ<X≤μ+σ)=0.682 6,P(μ-2σ<X≤μ+2σ)=0.954 4,P(μ-3σ<X≤μ+3σ)=0.997 4) 【解】 由于随机变量X听从正态分布N(800,502), 故有μ=800,σ=50,P(700<X≤900)=0.954 4.由正态分布的对称性,可得p0=P(X≤900)=P(X≤800)+P(800<X≤900)=+P(700<X≤900)=0.977 2. 11.(12分)某网站用“10分制”调查一社区人们的幸福度.现从调查人群中随机抽取16名,以下茎叶图10-9-3记录了他们的幸福度分数(以小数点前的一位数字为茎,小数点后的一位数字为叶): 图10-9-3 (1)指出这组数据的众数和中位数; (2)若幸福度不低于9,则称该人的幸福度为“极幸福”.求从这16人中随机选取3人,至多有1人是“极幸福”的概率; (3)以这16人的样本数据来估量整个社区的总体数据,若从该社区(人数很多)任选3人,记ξ表示抽到“极幸福”的人数,求ξ的分布列及数学期望. 【解】 (1)众数:8,6;中位数:8.75 (2)由茎叶图可知,幸福度为“极幸福”的人有4人. 设Ai表示所取3人中有i个人是“极幸福”,至多有1人是“极幸福”记为大事A,则P(A)=P(A0)+P(A1)=+= (3)从16人的样本数据中任意选取1人,抽到“极幸福”的人的概率为=,故依题意可知,从该社区中任选1人,抽到“极幸福”的人的概率P= ξ的可能取值为0,1,2,3 P(ξ=0)=3=;P(ξ=1)=C2= P(ξ=2)=C2=;P(ξ=3)=3= 所以ξ的分布列为 ξ 0 1 2 3 P Eξ=0×+1×+2×+3×=0.75 另解由题可知ξ~B, 所以Eξ=3×=0.75. 12.(13分)如图10-9-4所示,是某城市通过抽样得到的居民某年的月均用水量(单位:吨)的频率分布直方图. 图10-9-4 (1)求直方图中x的值; (2)若将频率视为概率,从这个城市随机抽取3位居民(看作有放回的抽样),求月均用水量在3至4吨的居民数X的分布列、数学期望与方差. 【解】 (1)依题意及频率分布直方图知, 0.02+0.1+x+0.37+0.39=1,解得x=0.12. (2)由题意知,X~B(3,0.1). 因此P(X=0)=C×0.93=0.729, P(X=1)=C×0.1×0.92=0.243, P(X=2)=C×0.12×0.9=0.027, P(X=3)=C×0.13=0.001. 故随机变量X的分布列为 X 0 1 2 3 P 0.729 0.243 0.027 0.001 X的数学期望为E(X)=3×0.1=0.3. X的方差为D(X)=3×0.1×(1-0.1)=0.27.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 名师金典 2022 名师 高考 数学 理科 一轮 复习 课时 检测 65 离散 随机变量 均值 方差 正态分布
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文
本文标题:2022版《名师金典》高考数学(理科)大一轮复习课时检测65离散型随机变量的均值与方差、正态分布-.docx
链接地址:https://www.zixin.com.cn/doc/3812045.html
链接地址:https://www.zixin.com.cn/doc/3812045.html