【创新设计】2022届-数学一轮(文科)-苏教版-江苏专用-课时作业-第八章-立体几何-1-.docx
《【创新设计】2022届-数学一轮(文科)-苏教版-江苏专用-课时作业-第八章-立体几何-1-.docx》由会员分享,可在线阅读,更多相关《【创新设计】2022届-数学一轮(文科)-苏教版-江苏专用-课时作业-第八章-立体几何-1-.docx(3页珍藏版)》请在咨信网上搜索。
第1讲 空间几何体及其表面积与体积 基础巩固题组 (建议用时:40分钟) 一、填空题 1.(2021·无锡模拟)若正三棱锥的底面边长为,侧棱长为1,则此三棱锥的体积为________. 解析 该正三棱锥的底面积为×()2=,高为=,所以该正三棱锥的体积为××=. 答案 2.(2021·宿迁模拟)用半径为2 cm的半圆形纸片卷成一个圆锥筒,则这个圆锥筒的高为________cm. 解析 用半径为2 cm的半圆形纸片卷成一个圆锥筒,该圆锥的母线长为2,底面圆的周长为2π,所以底面圆的半径为1,则这个圆锥筒的高为=(cm). 答案 3. (2022·福州模拟)如图所示,已知三棱柱ABC-A1B1C1的全部棱长均为1,且AA1⊥底面ABC,则三棱锥B1-ABC1的体积为________. 解析 三棱锥B1-ABC1的体积等于三棱锥A-B1BC1的体积,三棱锥A-B1BC1的高为,底面积为,故其体积为××=. 答案 4.(2021·盐城模拟)若一个圆锥的侧面开放图是面积为4π的半圆面,则该圆锥的体积为________. 解析 由圆锥的侧面开放图是面积为4π的半圆面,得该半圆的半径是2,即为圆锥的母线长.半圆周长即为圆锥底面圆的周长,设圆锥底面圆半径为r,则2π=2πr,解得r=,所以圆锥的高是h==,体积是V=πr2h=π. 答案 π 5.(2021·苏、锡、常、镇四市调研)已知△ABC为等腰直角三角形,斜边BC上的中线AD=2,将△ABC沿AD折成60°的二面角,连接BC,则三棱锥C-ABD的体积为________. 解析 由题意可得∠CDB=60°,DC=DB,所以△DCB是边长为2的等边三角形,且AD⊥平面DCB,所以三棱锥C-ABD的体积为S△BCD·AD=××2×2sin 60°×2=. 答案 6.(2021·南京模拟)已知圆锥的侧面开放图是一个半径为3 cm,圆心角为的扇形,则此圆锥的高为________cm. 解析 设圆锥的底面半径为r,则2πr=3×,所以r=1,所以高为=2. 答案 2 7.(2022·山东卷)一个六棱锥的体积为2,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为________. 解析 设六棱锥的高为h,斜高为h0.由于该六棱锥的底面是边长为2的正六边形,所以底面面积为×2×2×sin 60°×6=6,则×6h=2,得h=1,所以h0==2,所以该六棱锥的侧面积为×2×2×6=12. 答案 12 8.(2021·泰州检测)如图,在正三棱柱ABC-A1B1C1中,D为棱AA1的中点.若AA1=4,AB=2,则四棱锥B-ACC1D的体积为________. 解析 由于四棱锥B-ACC1D的底面ACC1D的面积为×(2+4)×2=6,高为×2=,所以体积为×6×=2. 答案 2 二、解答题 9.(2022·苏州检测)一个正三棱台的上、下底面边长分别是3 cm和6 cm,高是 cm. (1)求三棱台的斜高; (2)求三棱台的侧面积和表面积. 解 (1) 设O1、O分别为正三棱台ABC-A1B1C1的上、下底面正三角形的中心,如图所示,则O1O=,过O1作O1D1⊥B1C1,OD⊥BC,则D1D为三棱台的斜高;过D1作D1E⊥AD于E,则D1E=O1O=, 因O1D1=×3=,OD=×6=, 则DE=OD-O1D1=-=.在Rt△D1DE中, D1D===(cm). 故三棱台的斜高为cm. (2)设c,c′分别为上、下底的周长,h′为斜高, S侧=(c+c′)h′=(3×3+3×6)×=(cm2), S表=S侧+S上+S下=+×32+×62=(cm2). 故三棱台的侧面积为cm2,表面积为cm2. 10.如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=4,AD=CD=2,将△ADC沿AC折起,使平面ADC⊥平面ABC,得到几何体D-ABC,如图2所示. (1)求证:BC⊥平面ACD; (2)求几何体D-ABC的体积. (1)证明 在题图中,可得AC=BC=2, 从而AC2+BC2=AB2,故AC⊥BC, 又平面ADC⊥平面ABC, 平面ADC∩平面ABC=AC, BC⊂平面ABC,∴BC⊥平面ACD. (2)解 由(1)可知,BC为三棱锥B-ACD的高,BC=2,S△ACD=2,∴VB-ACD=S△ACD·BC=×2×2=,由等体积性可知,几何体D-ABC的体积为. 力量提升题组 (建议用时:25分钟) 1.(2022·江苏卷)设甲、乙两个圆柱的底面分别为S1,S2,体积分别为V1,V2,若它们的侧面积相等,且=,则的值是________. 解析 设甲、乙两个圆柱的底面和高分别为r1、h1,r2、h2,则2πr1h1=2πr2h2,=,又==,所以=,则==·=·==. 答案 2.已知球的直径SC=4,A,B是该球球面上的两点,AB=,∠ASC=∠BSC=30°,则棱锥S-ABC的体积为________. 解析 由题意知,如图所示,在棱锥S-ABC中,△SAC,△SBC都是有一个角为30°的直角三角形,其中AB=,SC=4,所以SA=SB=2,AC=BC=2,作BD⊥SC于D点,连接AD,易证SC⊥平面ABD,因此V=××()2×4=. 答案 3.(2022·云南统一检测)已知球O的体积等于,假如长方体的八个顶点都在球O的球面上,那么这个长方体的表面积的最大值等于________. 解析 由球O的体积为=πR3,得球O的半径R=.设长方体的长、宽、高分别为x,y,z,则x2+y2+z2=(2R)2=25,所以该长方体的表面积2xy+2xz+2yz≤2(x2+y2+z2)=50,当且仅当x=y=z时取等号,所以表面积的最大值为50. 答案 50 4. 如图,四边形ABCD为正方形,QA⊥平面ABCD,PD∥QA,QA=AB=PD. (1)证明:PQ⊥平面DCQ; (2)求棱锥Q-ABCD的体积与棱锥P-DCQ的体积的比值. (1)证明 由条件知四边形PDAQ为直角梯形. 由于QA⊥平面ABCD, 所以平面PDAQ⊥平面ABCD,交线为AD. 又四边形ABCD为正方形,DC⊥AD, 所以DC⊥平面PDAQ,可得PQ⊥DC. 在直角梯形PDAQ中可得DQ=PQ=PD, 则PQ⊥QD.又DQ∩DC=D,所以PQ⊥平面DCQ. (2)解 设AB=a.由题设知AQ为棱锥Q-ABCD的高, 所以棱锥Q-ABCD的体积V1=a3. 由(1)知PQ为棱锥P-DCQ的高,而PQ=a,△DCQ的面积为a2,所以棱锥P-DCQ的体积V2=a3. 故棱锥Q-ABCD的体积与棱锥P-DCQ的体积的比值为1.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 创新设计 创新 设计 2022 数学 一轮 文科 苏教版 江苏 专用 课时 作业 第八 立体几何
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文
本文标题:【创新设计】2022届-数学一轮(文科)-苏教版-江苏专用-课时作业-第八章-立体几何-1-.docx
链接地址:https://www.zixin.com.cn/doc/3811686.html
链接地址:https://www.zixin.com.cn/doc/3811686.html