2022届数学一轮(理科)人教B版课时作业-第三章-导数及其应用-3-3.docx
《2022届数学一轮(理科)人教B版课时作业-第三章-导数及其应用-3-3.docx》由会员分享,可在线阅读,更多相关《2022届数学一轮(理科)人教B版课时作业-第三章-导数及其应用-3-3.docx(5页珍藏版)》请在咨信网上搜索。
第3讲 导数的综合应用 基础巩固题组 (建议用时:40分钟) 一、选择题 1.(2022·湖南卷)若0<x1<x2<1,则 ( ) 解析 令f(x)=,则f′(x)==.当0<x<1时,f′(x)<0,即f(x)在(0,1)上单调递减,∵0<x1<x2<1,∴f(x2)<f(x1), ∴,故选C. 答案 C 2.(2021·泸州一模)做一个无盖的圆柱形水桶,若要使其体积是27π,且用料最省,则圆柱的底面半径为 ( ) A.3 B.4 C.6 D.5 解析 设圆柱的底面半径为R,母线长为l,则V=πR2l=27π,∴l=,要使用料最省,只须使圆柱的侧面积与下底面面积之和S最小,由题意,S= πR2+2πRl=πR2+2π·,∴S′=2πR-,令S′=0,得R=3,则当R=3时,S最小.故选A. 答案 A 3.(2021·沈阳统考)若函数f(x)=2x3-9x2+12x-a恰好有两个不同的零点,则a可能的值为 ( ) A.4 B.6 C.7 D.8 解析 由题意得f′(x)=6x2-18x+12=6(x-1)(x-2),由f′(x)>0得x<1或 x>2,由f′(x)<0得1<x<2,所以函数f(x)在(-∞,1),(2,+∞)上单调递增,在(1,2)上单调递减,从而可知f(x)的极大值和微小值分别为f(1),f(2),若欲使函数f(x)恰好有两个不同的零点,则需使f(1)=0或f(2)=0,解得a=5或a=4,而选项中只给出了4,所以选A. 答案 A 4.设函数f(x)的定义域为R,x0(x0≠0)是f(x)的极大值点,以下结论确定正确的是 ( ) A.∀x∈R,f(x)≤f(x0) B.-x0是f(-x)的微小值点 C.-x0是-f(x)的微小值点 D.-x0是-f(-x)的微小值点 解析 A错,由于极大值未必是最大值;B错,由于函数y=f(x)与函数y= f(-x)的图象关于y轴对称,-x0应是f(-x)的极大值点;C错,函数y=f(x)与函数y=-f(x)的图象关于x轴对称,x0应为-f(x)的微小值点;D正确,函数y=f(x)与y=-f(-x)的图象关于原点对称,-x0应为y=-f(-x)的微小值点. 答案 D 5.(2022·新课标全国Ⅰ卷)已知函数f(x)=ax3-3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围是 ( ) A.(2,+∞) B.(1,+∞) C.(-∞,-2) D.(-∞,-1) 解析 a=0时,不符合题意.a≠0时,f′(x)=3ax2-6x,令f′(x)=0,得 x=0或x=. 若a>0,则由图象知f(x)有负数零点,不符合题意. 则a<0,由图象结合f(0)=1>0知,此时必有f >0,即a×-3×+1>0,化简得a2>4,又a<0,所以a<-2,故选C. 答案 C 二、填空题 6.(2022·唐山模拟)已知a>0,函数f(x)=x3+ax2+bx+c在区间[-2,2]上单调递减,则4a+b的最大值为__________. 解析 ∵f(x)=x3+ax2+bx+c, ∴f′(x)=3x2+2ax+b,∵函数f(x)在区间[-2,2]上单调递减, ∴即 即4a+b≤-12,∴4a+b的最大值为-12. 答案 -12 7.(2021·开封一模)已知函数f(x)=ax3-3x+1对x∈(0,1]总有f(x)≥0成立,则实数a的取值范围是________. 解析 当x∈(0,1]时不等式ax3-3x+1≥0可化为a≥,设g(x)=,x∈(0,1], g′(x)==-. g′(x)与g(x)随x的变化状况如下表: x g′(x) + 0 - g(x) ↗ 极大值4 ↘ 因此g(x)的最大值为4,则实数a的取值范围是[4,+∞). 答案 [4,+∞) 8.已知函数f(x)=-x3+ax2-4在x=2处取得极值,若m,n∈[-1,1],则f(m)+f′(n)的最小值是________. 解析 对函数f(x)求导得f′(x)=-3x2+2ax, 由函数f(x)在x=2处取得极值知f′(2)=0, 即-3×4+2a×2=0,∴a=3. 由此可得f(x)=-x3+3x2-4,f′(x)=-3x2+6x, 易知f(x)在(-1,0)上单调递减,在(0,1)上单调递增, ∴当m∈[-1,1]时,f(m)min=f(0)=-4. 又∵f′(x)=-3x2+6x的图象开口向下,且对称轴为x=1, ∴当n∈[-1,1]时,f′(n)min=f′(-1)=-9. 故f(m)+f′(n)的最小值为-13. 答案 -13 三、解答题 9.(2022·青岛一模)设a为实数,函数f(x)=ex-2x+2a,x∈R. (1)求f(x)的单调区间与极值; (2)求证:当a>ln 2-1且x>0时,ex>x2-2ax+1. (1)解 由f(x)=ex-2x+2a,x∈R, 知f′(x)=ex-2,x∈R. 令f′(x)=0,得x=ln 2. 于是当x变化时,f′(x),f(x)的变化状况如下表: x (-∞,ln 2) ln 2 (ln 2,+∞) f′(x) - 0 + f(x) ↘ 2(1-ln 2+a) ↗ 故f(x)的单调递减区间是(-∞,ln 2), 单调递增区间是(ln 2,+∞), f(x)在x=ln 2处取得微小值, 微小值为f(ln 2)=eln 2-2ln 2+2a=2(1-ln 2+a). (2)证明 设g(x)=ex-x2+2ax-1,x∈R, 于是g′(x)=ex-2x+2a,x∈R. 由(1)知当a>ln 2-1时, g′(x)取最小值为g′(ln 2)=2(1-ln 2+a)>0. 于是对任意x∈R,都有g′(x)>0, 所以g(x)在R内单调递增. 于是当a>ln 2-1时,对任意x∈(0,+∞), 都有g(x)>g(0). 而g(0)=0,从而对任意x∈(0,+∞),都有g(x)>0. 即ex-x2+2ax-1>0,故ex>x2-2ax+1. 10.(2021·太原模拟)已知函数f(x)=(2-a)x-2(1+ln x)+a,g(x)=, (1)若函数f(x)在区间上无零点,求实数a的最小值; (2)若对任意给定的x0∈(0,e],在(0,e]上方程f(x)=g(x0)总存在两个不等的实根,求实数a的取值范围. 解 f(x)=(2-a)(x-1)-2ln x, (1)令m(x)=(2-a)(x-1),x>0;h(x)=2ln x,x>0,则f(x)=m(x)-h(x), ①当a<2时,m(x)在上为增函数,h(x)在上为增函数, 若f(x)在上无零点,则m≥h, 即(2-a)≥2ln , ∴a≥2-4ln 2,∴2-4ln 2≤a<2, ②当a≥2时,在上m(x)≥0,h(x)<0, ∴f(x)>0, ∴f(x)在上无零点. 由①②得a≥2-4ln 2, ∴amin=2-4ln 2. (2)g′(x)=e1-x-xe1-x=(1-x)e1-x, 当x∈(0,1)时,g′(x)>0,函数g(x)单调递增; 当x∈(1,e]时,g′(x)<0,函数g(x)单调递减, 又g(0)=0,g(1)=1,g(e)=e2-e>0, ∴函数g(x)在(0,e]上的值域为(0,1]. 方程f(x)=g(x0)等价于(2-a)(x-1)-g(x0)=2ln x, 令p(x)=(2-a)(x-1)-g(x0), 则p(x)过定点(1,-g(x0)),且-1≤-g(x0)<0, 令t(x)=2ln x,由p(x),t(x)的图象可知, 要使方程f(x)=g(x0)在(0,e]上总存在两个不相等的实根, 需使在(0,e]上恒成立, 即(2-a)(e-1)-g(x0)≥2ln e=2, ∴a≤2-, ∵0<g(x0)≤1,∴=2-, ∴a≤2-. 综上所述,a的取值范围为. 力气提升题组 (建议用时:25分钟) 11.已知y=f(x)是奇函数,当x∈(0,2)时,f(x)=ln x-ax,当x∈(-2,0)时,f(x)的最小值为1,则a等于 ( ) A. B. C. D.1 解析 ∵f(x)是奇函数,∴f(x)在(0,2)上的最大值为-1. 当x∈(0,2)时,f′(x)=-a,令f′(x)=0得x=,又a>,∴0<<2. 当x<时,f′(x)>0,f(x)在上单调递增; 当x>时,f′(x)<0,f(x)在上单调递减, ∴f(x)max=f =ln -a·=-1,解得a=1. 答案 D 12.(2022·大连模拟)已知函数f(x)=x3+ax2-x+c(x∈R),下列结论错误的是 ( ) A.函数f(x)确定存在极大值和微小值 B.若函数f(x)在(-∞,x1),(x2,+∞)上是增函数,则x2-x1≥ C.函数f(x)的图象是中心对称图形 D.函数f(x)确定存在三个零点 解析 对于A,f′(x)=3x2+2ax-1,Δ=4a2+12>0,因此函数f′(x)=3x2+2ax-1恒有两个相异零点x3,x4(其中x3<x4),易知函数f(x)的递增区间是 (-∞,x3)与(x4,+∞),递减区间是(x3,x4),函数f(x)确定存在极大值与微小值,选项A正确.对于B,由A知,x3+x4=-,x3x4=-,则x4-x3==≥,又x1≤x3,x4≤x2,因此x2-x1≥x4-x3≥,选项B正确.对于C,函数f(x)的解析式可以通过配方的方法化为形如(x+m)3+n(x+m)+h的形式,通过平移函数图象,函数的解析式可以化为y=x3+nx的形式,这是一个奇函数,其图象关于坐标原点对称,故函数f(x)的图象是中心对称图形,所以C正确.对于D,取a=-c=1,得f(x)=x3+x2-x-1=(x+1)2(x-1),此时函数f(x)仅有两个相异零点,因此选项D不正确.综上所述,选D. 答案 D 13.(2022·辽宁卷改编)当x∈[-2,1]时,不等式ax3-x2+4x+3≥0恒成立,则实数a的取值范围是________. 解析 由题意知∀x∈[-2,1]都有ax3-x2+4x+3≥0,即ax3≥x2-4x-3在x∈[-2,1]上恒成立. 当x=0时,ax3-x2+4x+3≥0变为3≥0恒成立, 即a∈R.当0<x≤1时,a≥=--+. 令t=(t≥1),g(t)=-3t3-4t2+t,由于g′(t)=-9t2-8t+1<0(t≥1), 所以g(t)在[1,+∞)上单调递减, g(t)max=g(1)=-6(t≥1),所以a≥-6. 当-2≤x<0时,a≤--+,同理, g(t)在(-∞,-1]上递减,在上递增. 因此g(t)min=g(-1)=-2,所以a≤-2. 综上,-6≤a≤-2. 答案 [-6,-2] 14.(2022·四川卷)已知函数f(x)=ex-ax2-bx-1,其中a,b∈R,e=2.718 28…为自然对数的底数. (1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值; (2)若f(1)=0,函数f(x)在区间(0,1)内有零点,证明:e-2<a<1. (1)解 由f(x)=ex-ax2-bx-1,有g(x)=f′(x)=ex-2ax-b, 所以g′(x)=ex-2a. 当x∈[0,1]时,g′(x)∈[1-2a,e-2a], 当a≤时,g′(x)≥0, 所以g(x)在[0,1]上单调递增, 因此g(x)在[0,1]上的最小值是g(0)=1-b; 当a≥时,g′(x)≤0,所以g(x)在[0,1]上单调递减. 因此g(x)在[0,1]上的最小值是g(1)=e-2a-b; 当<a<时, 令g′(x)=0,得x=ln(2a)∈(0,1), 所以函数g(x)在区间[0,ln(2a)]上单调递减,在区间(ln(2a),1]上单调递增. 于是,g(x)在[0,1]上的最小值是g(ln(2a))=2a-2aln(2a)-b.综上所述, 当a≤时, g(x)在[0,1]上的最小值是g(0)=1-b; 当<a<时,g(x)在[0,1]上的最小值是g(ln(2a))=2a-2aln(2a)-b; 当a≥时,g(x)在[0,1]上的最小值是g(1)=e-2a-b. (2)证明 设x0为f(x)在区间(0,1)内的一个零点,则由f(0)=f(x0)=0可知f(x)在区间(0,x0)上不行能单调递增,也不行能单调递减. 则g(x)不行能恒为正,也不行能恒为负. 故g(x)在区间(0,x0)内存在零点x1, 同理,g(x)在区间(x0,1)内存在零点x2, 所以g(x)在区间(0,1)内至少有两个零点. 由(1)知,当a≤时,g(x)在[0,1]上单调递增, 故g(x)在(0,1)内至多有一个零点. 当a≥时,g(x)在[0,1]上单调递减,故g(x)在(0,1)内至多有一个零点, 所以<a<. 此时g(x)在区间[0,ln(2a)]上单调递减,在区间(ln(2a),1]上单调递增,因此x1∈(0,ln(2a)],x2∈(ln(2a),1),必有g(0)=1-b>0,g(1)=e-2a-b>0. 由f(1)=0有a+b=e-1<2,有g(0)=a-e+2>0,g(1)=1-a>0, 解得e-2<a<1. 所以函数f(x)在区间(0,1)内有零点时,e-2<a<1.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 创新设计 2022 创新 设计 数学 一轮 理科 人教 课时 作业 第三 导数 及其 应用
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文