2022届高三数学一轮总复习基础练习:第八章-平面解析几何8-6-.docx
《2022届高三数学一轮总复习基础练习:第八章-平面解析几何8-6-.docx》由会员分享,可在线阅读,更多相关《2022届高三数学一轮总复习基础练习:第八章-平面解析几何8-6-.docx(6页珍藏版)》请在咨信网上搜索。
第六节 双曲线 时间:45分钟 分值:100分 一、选择题 1.(2022·新课标全国卷Ⅰ)已知双曲线-=1(a>0)的离心率为2,则a=( ) A.2 B. C. D.1 解析 由已知得=2,且a>0,解得a=1,故选D. 答案 D 2.(2022·广东卷)若实数k满足0<k<9,则曲线-=1与曲线-=1的( ) A.焦距相等 B.实半轴长相等 C.虚半轴长相等 D.离心率相等 解析 由于0<k<9,所以方程-=1与-=1均表示焦点在x轴上的双曲线.双曲线-=1中,其实轴长为10,虚轴长为2,焦距为2=2;双曲线-=1中,其实轴长为2,虚轴长为6,焦距为2=2.因此两曲线的焦距相等,故选A. 答案 A 3.已知中心在原点的双曲线C的右焦点为F(3,0),离心率等于,则C的方程是( ) A.-=1 B.-=1 C.-=1 D.-=1 解析 由双曲线C的右焦点为F(3,0),知c=3. 由e==,则a=2,故b2=c2-a2=9-4=5, 所以双曲线C的方程为-=1. 答案 B 4.(2022·新课标全国卷Ⅰ)已知F为双曲线C:x2-my2=3m(m>0)的一个焦点,则点F到C的一条渐近线的距离为( ) A. B.3 C.m D.3m 解析 由题意,可得双曲线C为-=1,则双曲线的半焦距c=.不妨取右焦点(,0),其渐近线方程为y=±x,即x±y=0.所以由点到直线的距离公式得d==.故选A. 答案 A 5.(2022·江西卷)过双曲线C:-=1的右顶点作x轴的垂线,与C的一条渐近线相交于点A,若以C的右焦点为圆心,半径为4的圆经过A,O两点(O为坐标原点),则双曲线C的方程为( ) A.-=1 B.-=1 C.-=1 D.-=1 解析 设双曲线的右顶点为B,则B(a,0). 不妨取渐近线y=x,则A点的坐标为(a,b), 从而可知|OA|=c. ∵由已知可得|OF|=|AF|=c=4, ∴△OAF为边长是c的等边三角形. 又AB⊥OF,∴|OB|=a=2,|AB|=b=2. 故所求的双曲线方程为-=1. 答案 A 6.双曲线-=1(a>0,b>0)的左、右焦点分别为F1,F2,渐近线分别为l1,l2,点P在第一象限内且在l1上,若l2⊥PF1,l2∥PF2,则该双曲线的离心率为( ) A. B.2 C. D. 解析 由题意可知F1(-c,0),F2(c,0),P(x0,y0),渐近线l1的直线方程为y=x,渐近线l2的直线方程为y=-x. ∵l2∥PF2,∴=-,即ay0=bc-bx0. ∵点P在l1上,即ay0=bx0, ∴bx0=bc-bx0,解得x0=.∴P. ∵l2⊥PF1,∴·=-1,即3a2=b2. ∵a2+b2=c2,∴4a2=c2,即c=2a. 答案 B 二、填空题 7.双曲线-=1的两条渐近线的方程为________. 解析 本题考查双曲线的渐近线方程. 由a2=16,b2=9,得渐近线方程为y=±x=±x. 答案 y=±x 8.双曲线-=1的离心率为,则m等于________. 解析 a2=16,b2=m,得c2=16+m,则e===,∴m=9. 答案 9 9.设双曲线C:-=1(a>0,b>0)的右焦点为F,O为坐标原点.若以F为圆心,FO为半径的圆与双曲线C的渐近线y=x交于点A(不同于O点),则△OAF的面积为________. 解析 由于右焦点F(c,0)到渐近线y=x,即bx-ay=0的距离为=b,所以|OA|=2a,故△OAF的面积为×2a×b=ab. 答案 ab 三、解答题 10.直线l:y=(x-2)和双曲线C:-=1(a>0,b>0)交于A,B两点,且|AB|=,又l关于直线l1:y=x对称的直线l2与x轴平行. (1)求双曲线C的离心率; (2)求双曲线C的方程. 解 (1)设双曲线C:-=1过一、三象限的渐近线l1:-=0的倾斜角为α. 由于l和l2关于l1对称,记它们的交点为P. 而l2与x轴平行,记l2与y轴的交点为Q. 依题意有∠QPO=∠POM=∠OPM=α. 又l:y=(x-2)的倾斜角为60°,则2α=60°,α=30°. 所以tan30°==. 于是e2==1+=1+=.所以e=. (2)由=,可设双曲线方程为-=1,即x2-3y2=3k2. 将y=(x-2)代入x2-3y2=3k2, 得x2-3·3(x-2)2=3k2. 化简得8x2-36x+36+3k2=0,则x1+x2=,x1x2=. 设A(x1,y1),B(x2,y2), 则|AB|= |x1-x2|=2 =2 ==,解得k2=1. 故所求双曲线C的方程为-y2=1. 11.(2021·湛江模拟)已知双曲线-=1(a>0,b>0)的右焦点为F(c,0). (1)若双曲线的一条渐近线方程为y=x且c=2,求双曲线的方程; (2)以原点O为圆心,c为半径作圆,该圆与双曲线在第一象限的交点为A,过A作圆的切线,斜率为-,求双曲线的离心率. 解 (1)∵双曲线的渐近线为y=±x,∴a=b. ∴c2=a2+b2=2a2=4,∴a2=b2=2. ∴双曲线方程为-=1. (2)设点A的坐标为(x0,y0), ∴直线AO的斜率满足·(-)=-1,∴x0=y0,① 依题意,圆的方程为x2+y2=c2, 将①代入圆的方程得3y+y=c2,即y0=c. ∴x0=c,∴点A的坐标为. 代入双曲线方程得-=1, 即b2c2-a2c2=a2b2.② 又∵a2+b2=c2, ∴将b2=c2-a2代入②式,整理得c4-2a2c2+a4=0. ∴34-82+4=0,∴(3e2-2)(e2-2)=0. ∵e>1,∴e=,∴双曲线的离心率为. 1.在平面直角坐标系xOy中,已知△ABC的顶点A(-5,0)和C(5,0),顶点B在双曲线-=1上,则为( ) A. B. C. D. 解析 设△ABC中角A,B,C所对的边分别是a,b,c,由正弦定理得=, 由双曲线的标准方程和定义可知,A,C是双曲线的焦点,且b=10,|c-a|=8. 所以==.故选C. 答案 C 2.已知双曲线C:-=1(a>0,b>0)的离心率为2,A,B为其左,右顶点,点P为双曲线C在第一象限的任意一点,点O为坐标原点,若PA,PB,PO的斜率为k1,k2,k3,则m=k1k2k3的取值范围为( ) A.(0,3) B.(0,) C. D.(0,8) 解析 e==2,b=a,设P(x,y),则-=1,k1k2=·===3,又双曲线的渐近线为y=±x,所以0<k3<,故0<m<3,选A. 答案 A 3.已知点F是双曲线-=1(a>0,b>0)的左焦点,点E是该双曲线的右顶点,过点F且垂直于x轴的直线与双曲线交于A,B两点,若△ABE是锐角三角形,则该双曲线的离心率e的取值范围是( ) A.(1,2) B.(,2) C.(,2) D.(2,3) 解析 由题意知,△ABE为等腰三角形.若△ABE是锐角三角形,则只需要∠AEB为锐角.依据对称性,只要∠AEF<即可.直线AB的方程为x=-c,代入双曲线方程得y2=,取点A,则|AF|=,|EF|=a+c,只要|AF|<|EF|就能使∠AEF<,即<a+c,即b2<a2+ac,即c2-ac-2a2<0,即e2-e-2<0,即-1<e<2.又e>1,故1<e<2. 答案 A 4.(2022·福建卷)已知双曲线E:-=1(a>0,b>0)的两条渐近线分别为l1:y=2x,l2:y=-2x. (1)求双曲线E的离心率. (2)如图,O为坐标原点,动直线l分别交直线l1,l2于A,B两点(A,B分别在第一、四象限),且△OAB的面积恒为8.摸索究:是否存在总与直线l有且只有一个公共点的双曲线E?若存在,求出双曲线E的方程;若不存在,说明理由. 解 (1)由于双曲线E的渐近线分别为y=2x,y=-2x, 所以=2,所以=2,故c=a, 从而双曲线E的离心率e==. (2)由(1)知,双曲线E的方程为-=1. 设直线l与x轴相交于点C. 当l⊥x轴时,若直线l与双曲线E有且只有一个公共点, 则|OC|=a,|AB|=4a. 又由于△OAB的面积为8, 所以|OC|·|AB|=8, 因此a·4a=8,解得a=2, 此时双曲线E的方程为-=1. 若存在满足条件的双曲线E, 则E的方程只能为-=1. 以下证明:当直线l不与x轴垂直时,双曲线E:-=1也满足条件. 设直线l的方程为y=kx+m,依题意,得k>2或k<-2,则C.记A(x1,y1),B(x2,y2). 由得y1=,同理,得y2=. 由S△OAB=|OC|·|y1-y2|,得 ·=8, 即m2=4|4-k2|=4(k2-4). 由得(4-k2)x2-2kmx-m2-16=0. 由于4-k2<0, 所以Δ=4k2m2+4(4-k2)(m2+16) =-16(4k2-m2-16). 又由于m2=4(k2-4), 所以Δ=0,即l与双曲线E有且只有一个公共点. 因此,存在总与l有且只有一个公共点的双曲线E,且E的方程为-=1.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 名师一号 名师 一号 2022 届高三 数学 一轮 复习 基础 练习 第八 平面 解析几何
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文