【创新设计】2022届-数学一轮(文科)-人教B版-课时作业-第八章-立体几何-第4讲-.docx
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 创新设计 创新 设计 2022 数学 一轮 文科 人教 课时 作业 第八 立体几何
- 资源描述:
-
第4讲 空间中的垂直关系 基础巩固题组 (建议用时:40分钟) 一、选择题 1.已知平面α⊥平面β,α∩β=l,点A∈α,A∉l,直线AB∥l,直线AC⊥l,直线m∥α,m∥β,则下列四种位置关系中,不肯定成立的是 ( ) A.AB∥m B.AC⊥m C.AB∥β D.AC⊥β 解析 如图所示, AB∥l∥m;AC⊥l,m∥l⇒AC⊥m;AB∥l⇒AB∥β,只有D不肯定成立,故选D. 答案 D 2.(2021·抚顺模拟)设a是空间中的一条直线,α是空间中的一个平面,则下列说法正确的是 ( ) A.过a肯定存在平面β,使得β∥α B.过a肯定存在平面β,使得β⊥α C.在平面α内肯定不存在直线b,使得a⊥b D.在平面α内肯定不存在直线b,使得a∥b 解析 当a与α相交时,不存在过a的平面β,使得β∥α,故A错误;直线a与其在平面α内的投影所确定的平面β满足β⊥α,故选B;平面α内的直线b只要垂直于直线a在平面α内的投影,则就必定垂直于直线a,故C错误;当a与α平行时,在平面α内存在直线b,使得a∥b,故D错误. 答案 B 3.如图,已知△ABC为直角三角形,其中∠ACB=90°,M为AB的中点,PM垂直于△ABC所在平面,那么 ( ) A.PA=PB>PC B.PA=PB<PC C.PA=PB=PC D.PA≠PB≠PC 解析 ∵M为AB的中点,△ACB为直角三角形, ∴BM=AM=CM,又PM⊥平面ABC, ∴Rt△PMB≌Rt△PMA≌Rt△PMC, 故PA=PB=PC. 答案 C 4.(2021·青岛质量检测)设a,b是两条不同的直线,α,β是两个不同的平面,则能得出a⊥b的是 ( ) A.a⊥α,b∥β,α⊥β B.a⊥α,b⊥β,α∥β C.a⊂α,b⊥β,α∥β D.a⊂α,b∥β,α⊥β 解析 A中,两直线可以平行、相交或异面,故不正确;B中,两直线平行,故不正确;C中,由α∥β,a⊂α可得a∥β,又b⊥β,得a⊥b,故正确;D中,两直线可以平行,相交或异面,故不正确. 答案 C 5. (2021·深圳调研)如图,在四周体D-ABC中,若AB=CB,AD=CD,E是AC的中点,则下列正确的是 ( ) A.平面ABC⊥平面ABD B.平面ABD⊥平面BDC C.平面ABC⊥平面BDE,且平面ADC⊥平面BDE D.平面ABC⊥平面ADC,且平面ADC⊥平面BDE 解析 由于AB=CB,且E是AC的中点,所以BE⊥AC,同理有DE⊥AC,于是AC⊥平面BDE.由于AC⊂平面ABC,所以平面ABC⊥平面BDE.又由于AC⊂平面ACD,所以平面ACD⊥平面BDE,所以选C. 答案 C 二、填空题 6.如图,PA⊥圆O所在的平面,AB是圆O的直径,C是圆O上的一点,E,F分别是点A在PB,PC上的正投影,给出下列结论: ①AF⊥PB;②EF⊥PB;③AF⊥BC; ④AE⊥平面PBC. 其中正确结论的序号是________. 解析 由题意知PA⊥平面ABC,∴PA⊥BC. 又AC⊥BC,且PA∩AC=A, ∴BC⊥平面PAC,∴BC⊥AF. ∵AF⊥PC,且BC∩PC=C,∴AF⊥平面PBC,∴AF⊥PB,AF⊥BC.又AE⊥PB,AE∩AF=A, ∴PB⊥平面AEF,∴PB⊥EF.故①②③正确. 答案 ①②③ 7.如图,在四棱锥P-ABCD中,PA⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足________时,平面MBD⊥平面PCD(只要填写一个你认为正确的条件即可). 解析 ∵PC在底面ABCD上的射影为AC,且AC⊥BD,∴BD⊥PC.∴当DM⊥PC(或BM⊥PC)时,即有PC⊥平面MBD,而PC⊂平面PCD,∴平面MBD⊥平面PCD. 答案 DM⊥PC(或BM⊥PC) 8.如图,在长方体ABCD-A1B1C1D1中,AB=AD=3 cm,AA1=2 cm,则四棱锥A-BB1D1D的体积为________ cm3. 解析 连接AC交BD于O,在长方体中, ∵AB=AD=3,∴BD=3 且AC⊥BD. 又∵BB1⊥底面ABCD, ∴BB1⊥AC. 又DB∩BB1=B, ∴AC⊥平面BB1D1D, ∴AO为四棱锥A-BB1D1D的高且AO=BD=. ∵S矩形BB1D1D=BD×BB1=3×2=6, ∴VA-BB1D1D=S矩形BB1D1D·AO =×6×=6(cm3). 答案 6 三、解答题 9. (2022·大连测试)如图,在直三棱柱ABC-A1B1C1中,AA1=2AC=2BC,D是棱AA1的中点,CD⊥B1D. (1)证明:CD⊥B1C1; (2)平面CDB1分此棱柱为两部分,求这两部分体积的比. (1)证明 由题设知,三棱柱的侧面为矩形, 由于D为AA1的中点,故DC=DC1, 又AA1=2A1C1,可得DC+DC2=CC, 所以CD⊥DC1,而CD⊥B1D,B1D∩C1D=D, 所以CD⊥平面B1C1D, 由于B1C1⊂平面B1C1D,所以CD⊥B1C1. (2)解 由(1)知B1C1⊥CD,且B1C1⊥C1C,则B1C1⊥平面ACC1A1, 设V1是平面CDB1上方部分的体积,V2是平面CDB1下方部分的体积, 则V1=VB1-CDA1C1=×S梯形CDA1C1×B1C1 =×B1C=B1C. V总=VABC-A1B1C1=AC×BC×CC1=B1C, V2=V总-V1=B1C=V1, 故=1∶1. 10.如图,在四棱锥P-ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD,E和F分别是CD和PC的中点.求证: (1)PA⊥底面ABCD; (2)BE∥平面PAD; (3)平面BEF⊥平面PCD. 证明 (1)由于平面PAD⊥底面ABCD,且PA垂直于这两个平面的交线AD,所以PA⊥底面ABCD. (2)由于AB∥CD,CD=2AB,E为CD的中点, 所以AB∥DE,且AB=DE. 所以四边形ABED为平行四边形. 所以BE∥AD. 又由于BE⊄平面PAD,AD⊂平面PAD, 所以BE∥平面PAD. (3)由于AB⊥AD,而且ABED为平行四边形, 所以BE⊥CD,AD⊥CD. 由(1)知PA⊥底面ABCD. 所以PA⊥CD. 所以CD⊥平面PAD. 从而CD⊥PD. 又E,F分别是CD和PC的中点, 所以PD∥EF. 故CD⊥EF,CD⊂平面PCD,由EF,BE⊂平面BEF,且EF∩BE=E. 所以CD⊥平面BEF. 所以平面BEF⊥平面PCD. 力量提升题组 (建议用时:25分钟) 11.如图,在斜三棱柱ABC-A1B1C1中,∠BAC=90°,BC1⊥AC,则C1在底面ABC上的射影H必在 ( ) A.直线AB上 B.直线BC上 C.直线AC上 D.△ABC内部 解析 由BC1⊥AC,又BA⊥AC,则AC⊥平面ABC1,因此平面ABC⊥平面ABC1,因此C1在底面ABC上的射影H在直线AB上. 答案 A 12.(2022·衡水中学模拟)如图,正方体AC1的棱长为1,过点A作平面A1BD的垂线,垂足为点H.则以下命题中,错误的命题是 ( ) A.点H是△A1BD的垂心 B.AH垂直于平面CB1D1 C.AH延长线经过点C1 D.直线CB1和CD1所成角为45° 解析 对于A,由于AA1=AB=AD,所以点A在平面A1BD上的射影必到点A1,B,D的距离相等,即点H是△A1BD的外心,而A1B=A1D=BD,故点H是△A1BD的垂心,命题A是真命题;对于B,由于B1D1∥BD,CD1∥A1B,故平面A1BD∥平面CB1D1,而AH⊥平面A1BD,从而AH⊥平面CB1D1,命题B是真命题;对于C,由于AH⊥平面CB1D1,因此AH的延长线经过点C1,命题C是真命题;对于D,由于△B1CD1为正三角形,所以∠B1CD= 60°,故直线CB1和CD1所成角为60°,因此命题D是假命题. 答案 D 13.(2021·河南师大附中二模)如图,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB,则下列结论中:①PB⊥AE;②平面ABC⊥平面PBC;③直线BC∥平面PAE;④∠PDA=45°. 其中正确的有________(把全部正确的序号都填上). 解析 由PA⊥平面ABC,AE⊂平面ABC,得PA⊥AE, 又由正六边形的性质得AE⊥AB,PA∩AB=A,得AE⊥平面PAB,又PB⊂平面PAB,∴AE⊥PB,①正确; 又平面PAD⊥平面ABC,∴平面ABC⊥平面PBC不成立,②错;由正六边形的性质得BC∥AD,又AD⊂平面PAD,∴BC∥平面PAD,∴直线BC∥平面PAE也不成立,③错;在Rt△PAD中,PA=AD=2AB,∴∠PDA=45°,∴④正确. 答案 ①④ 14.如图所示,在直四棱柱ABCD-A1B1C1D1中,DB=BC,DB⊥AC,点M是棱BB1上一点. (1)求证:B1D1∥平面A1BD; (2)求证:MD⊥AC; (3)试确定点M的位置,使得平面DMC1⊥平面CC1D1D. (1)证明 由直四棱柱,得BB1∥DD1, 又∵BB1=DD1,∴BB1D1D是平行四边形, ∴B1D1∥BD. 而BD⊂平面A1BD,B1D1⊄平面A1BD, ∴B1D1∥平面A1BD. (2)证明 ∵BB1⊥平面ABCD,AC⊂平面ABCD, ∴BB1⊥AC. 又∵BD⊥AC,且BD∩BB1=B, ∴AC⊥平面BB1D. 而MD⊂平面BB1D,∴MD⊥AC. (3)解 当点M为棱BB1的中点时,平面 DMC1⊥平面CC1D1D.理由如下: 取DC的中点N,D1C1的中点N1,连接NN1交DC1于O,连接OM,如图所示. ∵N是DC的中点,BD=BC, ∴BN⊥DC.又∵DC是平面ABCD与平面DCC1D1的交线, 而平面ABCD⊥平面DCC1D1, ∴BN⊥平面DCC1D1. 又可证得O是NN1的中点, ∴BM∥ON且BM=ON, 即BMON是平行四边形. ∴BN∥OM.∴OM⊥平面CC1D1D. ∵OM⊂平面DMC1, ∴平面DMC1⊥平面CC1D1D.展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




【创新设计】2022届-数学一轮(文科)-人教B版-课时作业-第八章-立体几何-第4讲-.docx



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/3811482.html