2021高考数学(广东专用-理)一轮题库:第3章-第2讲-导数的应用.docx
《2021高考数学(广东专用-理)一轮题库:第3章-第2讲-导数的应用.docx》由会员分享,可在线阅读,更多相关《2021高考数学(广东专用-理)一轮题库:第3章-第2讲-导数的应用.docx(3页珍藏版)》请在咨信网上搜索。
第2讲 导数的应用(一) 一、选择题 1.与直线2x-y+4=0平行的抛物线y=x2的切线方程是( ). A.2x-y+3=0 B.2x-y-3=0 C.2x-y+1=0 D.2x-y-1=0 解析 设切点坐标为(x0,x),则切线斜率为2x0, 由2x0=2得x0=1,故切线方程为y-1=2(x-1), 即2x-y-1=0. 答案 D 2.若函数h(x)=2x-+在(1,+∞)上是增函数,则实数k的取值范围是 ( ). A.(-2,+∞) B.(2,+∞) C.(-∞,-2) D.(-∞,2) 解析 由条件得h′(x)=2+=≥0在(1,+∞)上恒成立,即k≥-2x2在(1,+∞)上恒成立,所以k∈(-2,+∞). 答案 A 3.函数f(x)=(4-x)ex的单调递减区间是 ( ). A.(-∞,4) B.(-∞,3) C.(4,+∞) D.(3,+∞) 解析 f′(x)=ex+(4-x)·ex=ex(3-x),令f′(x)<0,由于ex>0,∴3-x<0,解得x>3. 答案 D 4.函数f(x)=ax3+bx在x=处有极值,则ab的值为( ) A.2 B.-2 C.3 D.-3 解析 f′(x)=3ax2+b,由f′=3a2+b=0,可得ab=-3.故选D. 答案 D 5.对于R上可导的任意函数f(x),若满足(x-1)f′(x)≥0,则必有( ). A.f(0)+f(2)<2f(1) B.f(0)+f(2)≤2f(1) C.f(0)+f(2)≥2f(1) D.f(0)+f(2)>2f(1) 解析 不等式(x-1)f′(x)≥0等价于或 可知f(x)在(-∞,1)上递减,(1,+∞)上递增,或者f(x)为常数函数,因此f(0)+f(2)≥2f(1). 答案 C 6.已知函数f(x)的定义域为[-1,5],部分对应值如下表.f(x)的导函数y=f′(x)的图象如图所示. 下列关于函数f(x)的命题: ①函数y=f(x)是周期函数; ②函数f(x)在[0,2]上是减函数; ③假如当x∈[-1,t]时,f(x)的最大值是2,那么t的最大值为4; ④当1<a<2时,函数y=f(x)-a有4个零点. 其中真命题的个数有 ( ). A.4 B.3 C.2 D.1 解析 依题意得,函数f(x)不行能是周期函数,因此①不正确;当x∈(0,2)时,f′(x)<0,因此函数f(x)在[0,2]上是减函数,②正确;当x∈[-1,t]时,f(x)的最大值是2,依题意,结合函数f(x)的可能图象外形分析可知,此时t的最大值是5,因此③不正确;留意到f(2)的值不明确,结合图形分析可知,将函数f(x)的图象向下平移a(1<a<2)个单位后相应曲线与x轴的交点个数不确定,因此④不正确.综上所述,选D. 答案 D 二、填空题 7.函数y=x-2sin x在[0,π]上的递增区间是________. 解析 y′=1-2cos x,令1-2cos x≥0,得cos x≤,解得2kπ+≤x≤2kπ+π,k∈R,又0≤x≤π,∴≤x≤π. 答案 8.函数f(x)=x3-3x2+1在x=________处取得微小值. 解析 f′(x)=3x2-6x,令f′(x)=0,得x1=0,x2=2,当x∈(-∞,0)时,f′(x)>0, 当x∈(0,2)时,f′(x)<0,当x∈(2,+∞)时,f′(x)>0,明显当x=2时f(x)取微小值. 答案 2 9.若曲线f(x)=ax5+ln x存在垂直于y轴的切线,则实数a的取值范围是________. 解析 ∵f′(x)=5ax4+,x∈(0,+∞), ∴由题意知5ax4+=0在(0,+∞)上有解. 即a=-在(0,+∞)上有解. ∵x∈(0,+∞),∴-∈(-∞,0).∴a∈(-∞,0). 答案 (-∞,0) 10.已知函数y=-x3+bx2-(2b+3)x+2-b在R上不是单调减函数,则b的取值范围是________. 解析 y′=-x2+2bx-(2b+3),要使原函数在R上单调递减,应有y′≤0恒成立,∴Δ=4b2-4(2b+3)=4(b2-2b-3)≤0,∴-1≤b≤3,故使该函数在R上不是单调减函数的b的取值范围是b<-1或b>3. 答案 (-∞,-1)∪(3,+∞) 三、解答题 11.设函数f(x)=ax3-3x2,(a∈R),且x=2是y=f(x)的极值点,求函数g(x)=ex·f(x)的单调区间. 解 f′(x)=3ax2-6x=3x(ax-2). 由于x=2是函数y=f(x)的极值点. 所以f′(2)=0,即6(2a-2)=0,因此a=1, 阅历证,当a=1时,x=2是函数f(x)的极值点, 所以g(x)=ex(x3-3x2), g′(x)=ex(x3-3x2+3x2-6x) =ex(x3-6x)=x(x+)(x-)ex. 由于ex>0,所以y=g(x)的单调增区间是(-,0)和(,+∞);单调减区间是(-∞,-)和(0,). 12.已知函数f(x)=x3-ax-1 (1)若f(x)在(-∞,+∞)上单调递增,求实数a的取值范围; (2)是否存在实数a,使f(x)在(-1,1)上单调递减?若存在,求出a的取值范围;若不存在试说明理由. 解 (1)f′(x)=3x2-a 由Δ≤0,即12a≤0,解得a≤0, 因此当f(x)在(-∞,+∞)上单调递增时,a的取值范围是(-∞,0]. (2)若f(x)在(-1,1)上单调递减, 则对于任意x∈(-1,1)不等式f′(x)=3x2-a≤0恒成立 即a≥3x2,又x∈(-1,1),则3x2<3因此a≥3 函数f(x)在(-1,1)上单调递减,实数a的取值范围是[3,+∞). 13.已知函数f(x)=aln x-ax-3(a∈R). (1)求函数f(x)的单调区间; (2)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,对于任意的t∈[1,2],函数g(x)=x3+x2在区间(t,3)上总不是单调函数,求m的取值范围. 解 (1)依据题意知,f′(x)=(x>0), 当a>0时,f(x)的单调递增区间为(0,1],单调递减区间为(1,+∞); 当a<0时,f(x)的单调递增区间为(1,+∞),单调递减区间为(0,1];当a=0 时,f(x)不是单调函数. (2)∵f′(2)=-=1,∴a=-2, ∴f(x)=-2ln x+2x-3. ∴g(x)=x3+x2-2x, ∴g′(x)=3x2+(m+4)x-2. ∵g(x)在区间(t,3)上总不是单调函数,且g′(0)=-2, ∴ 由题意知:对于任意的t∈[1,2],g′(t)<0恒成立, ∴∴-<m<-9. 14.设函数f(x)=ln x+在内有极值. (1)求实数a的取值范围; (2)若x1∈(0,1),x2∈(1,+∞).求证:f(x2)-f(x1)>e+2-.注:e是自然对数的底数. (1)解 易知函数f(x)的定义域为(0,1)∪(1,+∞), f′(x)=-==. 由函数f(x)在内有极值,可知方程f′(x)=0在内有解,令g(x)=x2-(a+2)x+1=(x-α)(x-β). 不妨设0<α<,则β>e,又g(0)=1>0, 所以g=-+1<0,解得a>e+-2. (2)证明 由(1)知f′(x)>0⇔0<x<α或x>β, f′(x)<0⇔α<x<1或1<x<β, 所以函数f(x)在(0,α),(β,+∞)上单调递增,在(α,1),(1,β)上单调递减. 由x1∈(0,1)得f(x1)≤f(α)=ln α+, 由x2∈(1,+∞)得f(x2)≥f(β)=ln β+, 所以f(x2)-f(x1)≥f(β)-f(α). 由(1)易知α·β=1,α+β=a+2, 所以f(β)-f(α)=ln β-ln+a=2ln β+a·=2ln β+a·=2lnβ+β-. 记h(β)=2ln β+β-(β>e), 则h′(β)=+1+=2>0, 所以函数h(β)在(e,+∞)上单调递增, 所以f(x2)-f(x1)≥h(β)>h(e)=2+e-.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 高考 数学 广东 专用 一轮 题库 导数 应用
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文