2020-2021学年高中人教B版数学必修四课时作业:3.1.2.docx
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- -学案导学设计 学案导学 设计 2020 2021 学年 中人 数学 必修 课时 作业 3.1
- 资源描述:
-
3.1.2 两角和与差的正弦 课时目标 1.在两角差的余弦公式的基础上,会推导两角和与差的正弦公式.2.机敏运用两角和与差的正弦公式进行求值、化简、证明. 1.两角和与差的正弦公式 S(α+β):sin(α+β)=_______________________________________________________. S(α-β):sin(α-β)=________________________________________________________. 2.两角互余或互补 (1)若α+β=,其α、β为任意角,我们就称α、β互余.例如:-α与+α互余,+α与-α互余. (2)若α+β=π,其α,β为任意角,我们就称α、β互补.例如:+α与π-α互补,α+与π-α互补. 一、选择题 1.计算sin 43°cos 13°-cos 43°sin 13°的结果等于( ) A. B. C. D. 2.sin 245°sin 125°+sin 155°sin 35°的值是( ) A.- B.- C. D. 3.若锐角α、β满足cos α=,cos(α+β)=,则sin β的值是( ) A. B. C. D. 4.已知cos αcos β-sin αsin β=0,那么sin αcos β+cos αsin β的值为( ) A.-1 B.0 C.1 D.±1 5.若函数f(x)=(1+tan x)cos x,0≤x<,则f(x)的最大值为( ) A.1 B.2 C.1+ D.2+ 6.在三角形ABC中,三内角分别是A、B、C,若sin C=2cos Asin B,则三角形ABC确定是( ) A.直角三角形 B.正三角形 C.等腰三角形 D.等腰直角三角形 二、填空题 7.化简sin+cos的结果是________. 8.函数f(x)=sin x-cos x的最大值为________. 9.已知sin(α+β)=,sin(α-β)=,则的值是__________. 10.式子的值是________. 三、解答题 11.已知<β<α<,cos(α-β)=,sin(α+β)=-,求sin 2α的值. 12.证明:-2cos(α+β)=. 力气提升 13.已知sin α+cos=,则sin的值是________. 14.求函数f(x)=sin x+cos x+sin x·cos x,x∈R的最值及取到最值时x的值. 1.两角和差公式可以看成是诱导公式的推广,诱导公式可以看成两角和差公式的特例,例如: sin=sin cos α-cos sin α=-cos α. 2.使用和差公式时不仅要会正用,还要能够逆用公式,如化简sin βcos(α+β)-cos βsin(α+β)时,不要将cos(α+β)和sin(α+β)开放,而应接受整体思想,作如下变形:sin βcos(α+β)-cos βsin(α+β)=sin[β-(α+β)]=sin(-α)=-sin α. 3.运用和差公式求值、化简、证明时要留意,机敏进行三角变换,有效地沟通条件中的角与问题结论中的角之间的联系,选用恰当的公式快捷求解. 3.1.2 两角和与差的正弦 答案 学问梳理 1.sin αcos β+cos αsin β sin αcos β-cos αsin β 作业设计 1.A 2.B [原式=-sin 65°sin 55°+sin 25°sin 35° =-cos 25°cos 35°+sin 25°sin 35° =-cos(35°+25°)=-cos 60°=-.] 3.C [∵cos α=,cos(α+β)=, ∴sin α=,sin(α+β)=. ∴sin β=sin[(α+β)-α] =sin(α+β)cos α-cos(α+β)sin α =×-×=.] 4.D [cos αcos β-sin αsin β=cos(α+β)=0. ∴α+β=kπ+,k∈Z, ∴sin αcos β+cos αsin β=sin(α+β)=±1.] 5.B [f(x)=(1+tan x)cos x=cos x+sin x =2(cos x+sin x)=2sin(x+), ∵0≤x<, ∴≤x+<. ∴f(x)max=2.] 6.C [∵sin C=sin(A+B)=sin Acos B+cos Asin B =2cos Asin B ∴sin Acos B-cos Asin B=0. 即sin(A-B)=0,∴A=B.] 7.cos α 解析 原式=sin cos α+cos sin α+cos cos α-sin sin α=cos α. 8. 解析 ∵f(x)=sin x-cos x= = =sin, ∴f(x)的最大值为. 9. 解析 ∴, ∴==. 10. 解析 原式= = ==tan 60°=. 11.解 由于<β<α<, 所以0<α-β<,π<α+β<. 又cos(α-β)=,sin(α+β)=-, 所以sin(α-β)== =, cos(α+β)=-=- =-. 所以sin 2α=sin[(α-β)+(α+β)] =sin(α-β)cos(α+β)+cos(α-β)sin(α+β) =×+×=-. 12.证明 -2cos(α+β) = = = ==. 13.- 解析 sin α+cos =sin α+cos αcos +sin αsin =sin α+cos α = = =sin=. ∴sin=. ∴sin=-sin=-. 14.解 设sin x+cos x=t, 则t=sin x+cos x= =sin, ∴t∈[-,], ∴sin x·cos x==. ∴f(x)=sin x+cos x+sin x·cos x 即g(t)=t+=(t+1)2-1,t∈[-,]. 当t=-1,即sin x+cos x=-1时,f(x)min=-1. 此时,由sin=-, 解得x=2kπ-π或x=2kπ-,k∈Z. 当t=,即sin x+cos x=时,f(x)max=+. 此时,由sin=,sin=1. 解得x=2kπ+,k∈Z. 综上,当x=2kπ-π或x=2kπ-,k∈Z时,f(x)取最小值且f(x)min=-1;当x=2kπ+,k∈Z时,f(x)取得最大值, f(x)max=+.展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




2020-2021学年高中人教B版数学必修四课时作业:3.1.2.docx



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/3811153.html