2021高考数学(广东专用-理)一轮题库:第11章-第7讲--离散型随机变量的均值与方差.docx
《2021高考数学(广东专用-理)一轮题库:第11章-第7讲--离散型随机变量的均值与方差.docx》由会员分享,可在线阅读,更多相关《2021高考数学(广东专用-理)一轮题库:第11章-第7讲--离散型随机变量的均值与方差.docx(4页珍藏版)》请在咨信网上搜索。
第7讲 离散型随机变量的均值与方差 一、选择题 1.某班有的同学数学成果优秀,假如从班中随机地找出5名同学,那么其中数学成果优秀的同学数X~B,则E(2X+1)等于( ) A. B. C.3 D. 解析 由于X~B,所以E(X)=,所以E(2X+1)=2E(X)+1=2×+1 =. 答案 D 2.某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需要再补种2粒,补种的种子数记为X,则X的数学期望为( ). A.100 B.200 C.300 D.400 解析 种子发芽率为0.9,不发芽率为0.1,每粒种子发芽与否相互独立,故设没有发芽的种子数为ξ,则ξ~B(1 000,0.1),∴E(ξ)=1 000×0.1=100,故需补种的期望为E(X)=2·E(ξ)=200. 答案 B 3.若p为非负实数,随机变量ξ的分布列为 ξ 0 1 2 P -p p 则E(ξ)的最大值为 ( ). A.1 B. C. D.2 解析 由p≥0,-p≥0,则0≤p≤,E(ξ)=p+1≤. 答案 B 4.已知随机变量X+η=8,若X~B(10,0.6),则E(η),D(η)分别是 ( ). A.6和2.4 B.2和2.4 C.2和5.6 D.6和5.6 解析 由已知随机变量X+η=8,所以有η=8-X.因此,求得E(η)=8-E(X)=8-10×0.6=2,D(η)=(-1)2D(X)=10×0.6×0.4=2.4. 答案 B 5.一个篮球运动员投篮一次得3分的概率为a,得2分的概率为b,不得分的概率为c(a、b、c∈(0,1)),已知他投篮一次得分的均值为2,则+的最小值为 ( ). A. B. C. D. 解析 由已知得,3a+2b+0×c=2, 即3a+2b=2,其中0<a<,0<b<1. 又+= =3+++≥+2 =, 当且仅当=,即a=2b时取“等号”,又3a+2b=2,即当a=,b=时,+的最小值为,故选D. 答案 D 6.设10≤x1<x2<x3<x4≤104,x5=105.随机变量ξ1取值x1、x2、x3、x4、x5的概率均为0.2,随机变量ξ2取值、、、、的概率也均为0.2.若记D(ξ1)、D(ξ2)分别为ξ1、ξ2的方差,则 ( ). A.D(ξ1)>D(ξ2) B.D(ξ1)=D(ξ2) C.D(ξ1)<D(ξ2) D.D(ξ1)与D(ξ2)的大小关系与x1、x2、x3、x4的取值有关 解析 利用期望与方差公式直接计算. E(ξ1)=0.2x1+0.2x2+0.2x3+0.2x4+0.2x5 =0.2(x1+x2+x3+x4+x5). E(ξ2)=0.2×+0.2×+…+0.2× =0.2(x1+x2+x3+x4+x5). ∴E(ξ1)=E(ξ2),记作, ∴D(ξ1)=0.2[(x1-)2+(x2-)2+…+(x5-)2] =0.2[x+x+…+x+52-2(x1+x2+…+x5)] =0.2(x+x+…+x-52). 同理D(ξ2)=0.22+2+…+2-5 2. ∵2<,…,2<, ∴2+2+…+2<x+x+x+x+x.∴D(ξ1)>D(ξ2). 答案 A 二、填空题 7.某射手射击所得环数ξ的分布列如下: ξ 7 8 9 10 P x 0.1 0.3 y 已知ξ的期望E(ξ)=8.9,则y的值为________. 解析 x+0.1+0.3+y=1,即x+y=0.6. ① 又7x+0.8+2.7+10y=8.9,化简得7x+10y=5.4. ② 由①②联立解得x=0.2,y=0.4. 答案 0.4 8.马老师从课本上抄录一个随机变量ξ的概率分布列如下表: ξ 1 2 3 P ? ! ? 请小牛同学计算ξ的数学期望.尽管“!”处完全无法看清,且两个“?”处字迹模糊,但能断定这两个“?”处的数值相同.据此,小牛给出了正确答案E(ξ)=________. 解析 令“?”为a,“!”为b,则2a+b=1.又E(ξ)=a+2b+3a=2(2a+b)=2. 答案 2 9.袋中有大小、外形相同的红、黑球各一个,每次摸取一个球登记颜色后放回,现连续取球8次,记取出红球的次数为X,则X的方差D(X)=________. 解析 每次取球时,红球被取出的概率为,8次取球看做8次独立重复试验,红球毁灭的次数X~B,故D(X)=8××=2. 答案 2 10.罐中有6个红球,4个白球,从中任取1球,记住颜色后再放回,连续摸取4次,设ξ为取得红球的次数,则ξ的期望E(ξ)=________. 解析 由于是有放回地摸球,所以每次摸球(试验)摸得红球(成功)的概率均为,连续摸4次(做4次试验),ξ为取得红球(成功)的次数,则ξ~B, 从而有E(ξ)=np=4×=. 答案 三、解答题 11.袋中有20个大小相同的球,其中记上0号的有10个,记上n号的有n个(n=1,2,3,4).现从袋中任取一球,X表示所取球的标号. (1)求X的分布列、期望和方差; (2)若η=aX+b,E(η)=1,D(η)=11,试求a,b的值. 解 (1)X的分布列为 X 0 1 2 3 4 P ∴E(X)=0×+1×+2×+3×+4×=1.5. D(X)=(0-1.5)2×+(1-1.5)2×+(2-1.5)2×+(3-1.5)2×+(4-1.5)2×=2.75. (2)由D(η)=a2D(X),得a2×2.75=11,即a=±2. 又E(η)=aE(X)+b, 所以当a=2时,由1=2×1.5+b,得b=-2. 当a=-2时,由1=-2×1.5+b,得b=4. ∴或即为所求. 12.甲、乙、丙三名射击运动员射中目标的概率分别为,a,a(0<a<1),三人各射击一次,击中目标的次数记为ξ. (1)求ξ的分布列及数学期望; (2)在概率P(ξ=i)(i=0,1,2,3)中,若P(ξ=1)的值最大,求实数a的取值范围. 解 (1)P(ξ)是“ξ个人命中,3-ξ个人未命中”的概率.其中ξ的可能取值为0,1,2,3. P(ξ=0)=(1-a)2=(1-a)2, P(ξ=1)=(1-a)2+a(1-a)+(1-a)a=(1-a2), P(ξ=2)=a2+(1-a)a+a(1-a)=(2a-a2), P(ξ=3)=. 所以ξ的分布列为 ξ 0 1 2 3 P (1-a)2 (1-a2) (2a-a2) ξ的数学期望为 E(ξ)=0×(1-a)2+1×(1-a)2+2×(2a-a2)+3×=. (2)P(ξ=1)-P(ξ=0)=[(1-a2)-(1-a)2]=a(1-a), P(ξ=1)-P(ξ=2)=[(1-a2)-(2a-a2)]=, P(ξ=1)-P(ξ=3)=[(1-a2)-a2]=. 由及0<a<1,得0<a≤, 即a的取值范围是. 13.如图,A地到火车站共有两条路径L1和L2,据统计,通过两条路径所用的时间互不影响,所用时间落在各时间段内的频率如下表: 时间(分钟) 10~20 20~30 30~40 40~50 50~60 L1的频率 0.1 0.2 0.3 0.2 0.2 L2的频率 0 0.1 0.4 0.4 0.1 现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站. (1)为了尽最大可能在各自允许的时间内赶到火车站,甲和乙应如何选择各自的路径? (2)用X表示甲、乙两人中在允许的时间内能赶到火车站的人数,针对(1)的选择方案,求X的分布列和数学期望. 解 (1)Ai表示大事“甲选择路径Li时,40分钟内赶到火车站”,Bi表示大事“乙选择路径Li时,50分钟内赶到火车站”,i=1,2. 用频率估量相应的概率可得 P(A1)=0.1+0.2+0.3=0.6,P(A2)=0.1+0.4=0.5, ∵P(A1)>P(A2),∴甲应选择L1; P(B1)=0.1+0.2+0.3+0.2=0.8,P(B2)=0.1+0.4+0.4=0.9, ∵P(B2)>P(B1),∴乙应选择L2. (2)A,B分别表示针对(1)的选择方案,甲、乙在各自允许的时间内赶到火车站, 由(1)知P(A)=0.6,P(B)=0.9,又由题意知,A,B独立, ∴P(X=0)=P()=P()P()=0.4×0.1=0.04, P(X=1)=P(B+A)=P()P(B)+P(A)P() =0.4×0.9+0.6×0.1=0.42, P(X=2)=P(AB)=P(A)P(B)=0.6×0.9=0.54. ∴X的分布列为 X 0 1 2 P 0.04 0.42 0.54 ∴E(X)=0×0.04+1×0.42+2×0.54=1.5. 14.某城市有甲、乙、丙3个旅游景点,一位游客巡游这3个景点的概率分别是0.4、0.5、0.6,且游客是否巡游哪个景点互不影响,用X表示该游客离开该城市时巡游的景点数与没有巡游的景点数之差的确定值. (1)求X的分布列及期望; (2)记“f(x)=2Xx+4在[-3,-1]上存在x0,使f(x0)=0”为大事A,求大事A的概率. 解 (1)设游客巡游甲、乙、丙景点分别记为大事A1、A2、A3,已知A1、A2、 A3相互独立,且P(A1)=0.4,P(A2)=0.5,P(A3)=0.6.游客巡游的景点数可能 取值为0、1、2、3,相应的游客没有巡游的景点数可能取值为3、2、1、0, 所以X的可能取值为1、3.则P(X=3)=P(A1A2A3)+P( ) =P(A1)·P(A2)·P(A3)+P()·P()·P() =2×0.4×0.5×0.6=0.24. P(X=1)=1-0.24=0.76. 所以分布列为: X 1 3 P 0.76 0.24 ∴E(X)=1×0.76+3×0.24=1.48. (2)∵f(x)=2Xx+4在[-3,-1]上存在x0,使得f(x0)=0, ∴f(-3)·f(-1)≤0,即(-6X+4)(-2X+4)≤0, 解得:≤X≤2. ∴P(A)=P=P(X=1)=0.76.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 高考 数学 广东 专用 一轮 题库 11 离散 随机变量 均值 方差
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文
本文标题:2021高考数学(广东专用-理)一轮题库:第11章-第7讲--离散型随机变量的均值与方差.docx
链接地址:https://www.zixin.com.cn/doc/3810199.html
链接地址:https://www.zixin.com.cn/doc/3810199.html