2022届-数学一轮(文科)人教A版-第五章-平面向量-第5章-第4讲.docx
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 创新设计 创新 设计 2022 数学 一轮 文科 人教 第五 平面 向量
- 资源描述:
-
第4讲 平面对量的应用 基础巩固题组 (建议用时:40分钟) 一、选择题 1.已知点A(-2,0),B(3,0),动点P(x,y)满足·=x2,则点P的轨迹是 ( ) A.圆 B.椭圆 C.双曲线 D.抛物线 解析 =(-2-x,-y),=(3-x,-y), ∴·=(-2-x)(3-x)+y2=x2,∴y2=x+6. 答案 D 2.在△ABC中,(+)·=||2,则△ABC的外形肯定是 ( ) A.等边三角形 B.等腰三角形 C.直角三角形 D.等腰直角三角形 解析 由(+)·=||2, 得·(+-)=0, 即·(++)=0,2·=0, ∴⊥,∴A=90°. 又依据已知条件不能得到||=||, 故△ABC肯定是直角三角形. 答案 C 3.(2022·深圳调研)在△ABC中,AB=AC=2,BC=2,则·= ( ) A.2 B.2 C.-2 D.-2 解析 由余弦定理得 cos A= ==-, 所以·=||·||cos A =2×2×=-2,故选D. 答案 D 4.已知|a|=2|b|,|b|≠0,且关于x的方程x2+|a|x-a·b=0有两相等实根,则向量a与b的夹角是 ( ) A.- B.- C. D. 解析 由已知可得Δ=|a|2+4a·b=0, 即4|b|2+4×2|b|2cos θ=0, ∴cos θ=-, 又∵0≤θ≤π,∴θ=. 答案 D 5.(2021·杭州质量检测)设O是△ABC的外心(三角形外接圆的圆心).若=+,则∠BAC的度数等于 ( ) A.30° B.45° C.60° D.90° 解析 取BC的中点D,连接AD,则+=2 .由题意得3=2,∴AD为BC的中线且O为重心.又O为外心,∴△ABC为正三角形, ∴∠BAC=60°,故选C. 答案 C 二、填空题 6.(2021·广州综合测试)在△ABC中,若·=·=2,则边AB的长等于________. 解析 由题意知·+·=4,即·(+)=4,即·=4, ∴||=2. 答案 2 7.(2022·天津十二区县重点中学联考)在边长为1的正方形ABCD中,M为BC的中点,点E在线段AB上运动,则·的最大值为________. 解析 以点A为坐标原点,AB,AD所在直线分别为x,y轴建立平面直角坐标系,则C(1,1),M,设E(x,0),x∈[0,1],则·=(1-x,1)·=(1-x)2+,x∈[0,1]单调递减,当x=0时,·取得最大值. 答案 8.(2021·太原模拟)已知向量a=(cos θ,sin θ),向量b=(,-1),则|2a-b|的最大值与最小值的和为________. 解析 由题意可得a·b=cos θ-sin θ=2cos,则|2a-b|===∈[0,4],所以|2a-b|的最大值与最小值的和为4. 答案 4 三、解答题 9.(2021·长沙模拟)已知向量a=,b=(cos x,-1). (1)当a∥b时,求tan 2x的值; (2)求函数f(x)=(a+b)·b在上的值域. 解 (1)∵a∥b,∴sin x·(-1)-·cos x=0, 即sin x+cos x=0, tan x=-,∴tan 2x==. (2)f(x)=(a+b)·b=a·b+b2 =sin xcos x-+cos2x+1 =sin 2x-+cos 2x++1 =sin. ∵-≤x≤0,∴-π≤2x≤0,-≤2x+≤, ∴-≤sin≤, ∴f(x)的值域为. 10.(2022·陕西卷)在直角坐标系xOy中,已知点A(1,1),B(2,3),C(3,2),点P(x,y)在△ABC三边围成的区域(含边界)上,且=m+n(m,n∈R). (1)若m=n=,求||; (2)用x,y表示m-n,并求m-n的最大值. 解 (1)∵m=n=,=(1,2),=(2,1), ∴=(1,2)+(2,1)=(2,2), ∴||==2. (2)∵=m(1,2)+n(2,1)=(m+2n,2m+n), ∴ 两式相减,得m-n=y-x. 令y-x=t,由图知,当直线y=x+t过点B(2,3)时,t取得最大值1,故m-n的最大值为1. 力量提升题组 (建议用时:25分钟) 11.(2022·衡水中学一调)已知|a|=2|b|≠0,且关于x的函数f(x)=x3+|a|x2+a·bx在R上有极值,则向量a与b的夹角的范围是 ( ) A. B. C. D. 解析 设a与b的夹角为θ. ∵f(x)=x3+|a|x2+a·bx. ∴f′(x)=x2+|a|x+a·b. ∵函数f(x)在R上有极值, ∴方程x2+|a|x+a·b=0有两个不同的实数根, 即Δ=|a|2-4a·b>0,∴a·b<, 又∵|a|=2|b|≠0, ∴cos θ=<=,即cos θ<, 又∵θ∈[0,π],∴θ∈,故选C. 答案 C 12.△ABC外接圆的半径等于1,其圆心O满足=(+),||=||,则向量在方向上的投影等于 ( ) A.- B. C. D.3 解析 由=(+)可知O是BC的中点,即BC为外接圆的直径,所以||=||=||,又由于||=||=1,故△OAC为等边三角形,即∠AOC=60°,由圆周角定理可知∠ABC=30°,且||=,所以在方向上的投影为||·cos ∠ABC=×cos 30°=,故选C. 答案 C 13.在△ABC中,∠A=90°,AB=1,AC=2,设点P,Q满足=λ,=(1-λ),λ∈R.若·=-2,则λ=________. 解析 ∵=-=(1-λ)-, =-=λ-, ∴·=-2⇒[(1-λ)-]·[λ-]=-2, 化简得(1-λ)λ·-(1-λ)2-λ2+· =-2,又由于·=0,2=4,2=1,所以解得λ=. 答案 14.(2021·江西五校联考)已知向量m=,n=. (1)若m·n=1,求cos的值; (2)记f(x)=m·n,在△ABC中,角A,B,C的对边分别是a,b,c,且满足(2a-c)cos B=bcos C,求函数f(A)的取值范围. 解 m·n=sin cos +cos2 =sin +×cos + =sin+. (1)∵m·n=1,∴sin=, cos=1-2sin2=, cos=-cos=-. (2)∵(2a-c)cos B=bcos C,由正弦定理得 (2sin A-sin C)cos B=sin Bcos C, ∴2sin Acos B=sin Ccos B+sin Bcos C, ∴2sin Acos B=sin(B+C). ∵A+B+C=π,∴sin(B+C)=sin A,且sin A≠0, ∴cos B=,B=. ∴0<A<. ∴<+<, <sin<1. 又∵f(x)=m·n=sin+, ∴f(A)=sin+,故1<f(A)<. 故函数f(A)的取值范围是.展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




2022届-数学一轮(文科)人教A版-第五章-平面向量-第5章-第4讲.docx



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/3805735.html