2021年高考数学(四川专用-理)一轮复习考点突破:第12篇-第2讲-直接证明与间接证明.docx
《2021年高考数学(四川专用-理)一轮复习考点突破:第12篇-第2讲-直接证明与间接证明.docx》由会员分享,可在线阅读,更多相关《2021年高考数学(四川专用-理)一轮复习考点突破:第12篇-第2讲-直接证明与间接证明.docx(7页珍藏版)》请在咨信网上搜索。
1、第2讲直接证明与间接证明最新考纲1了解直接证明的两种基本方法分析法和综合法;了解分析法和综合法的思考过程和特点2了解反证法的思考过程和特点.知 识 梳 理1直接证明(1)综合法定义:利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最终推导出所要证明的结论成立,这种证明方法叫做综合法框图表示:PQ1Q1Q2Q2Q3QnQ(其中P表示已知条件、已有的定义、公理、定理等,Q表示要证的结论)思维过程:由因导果(2)分析法定义:从要证明的结论动身,逐步寻求使它成立的充分条件,直至最终,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止这种证明方法叫做分析法框图
2、表示:QP1P1P2P2P3得到一个明显成立的条件(其中Q表示要证明的结论)思维过程:执果索因2间接证明反证法:假设原命题不成立(即在原命题的条件下,结论不成立),经过正确的推理,最终得出冲突,因此说明假设错误,从而证明原命题成立的证明方法辨 析 感 悟对三种证明方法的生疏(1)分析法是从要证明的结论动身,逐步查找使结论成立的充要条件()(2)反证法是指将结论和条件同时否定,推出冲突()(3)在解决问题时,经常用分析法查找解题的思路与方法,再用综合法呈现解决问题的过程()(4)证明不等式最合适的方法是分析法()感悟提升两点提示一是分析法是“执果索因”,特点是从“未知”看“需知”,逐步靠拢“已知
3、”,其逐步推理,实际上是查找使结论成立的充分条件,如(1);二是应用反证法证题时必需先否定结论,把结论的反面作为条件,且必需依据这一条件进行推理,否则,仅否定结论,不从结论的反面动身进行推理,就不是反证法所谓冲突主要指:与已知条件冲突;与假设冲突;与定义、公理、定理冲突;与公认的简洁事实冲突;自相冲突.考点一综合法的应用【例1】 (2021新课标全国卷)设a,b,c均为正数,且abc1,证明:(1)abbcac;(2)1.证明(1)由a2b22ab,b2c22bc,c2a22ac得a2b2c2abbcca.由题设得(abc)21,即a2b2c22ab2bc2ca1.所以3(abbcca)1,即
4、abbcca.(2)由于b2a,c2b,a2c,故(abc)2(abc),即abc.所以1.同学用书第203页规律方法 综合法往往以分析法为基础,是分析法的逆过程,但更要留意从有关不等式的定理、结论或题设条件动身,依据不等式的性质推导证明【训练1】 (1)设a0,b0,ab1,求证:8.(2)已知a,b,c是全不相等的正实数,求证:3.证明(1)ab1,11222248,当且仅当ab时,等号成立(2)a,b,c全不相等,且都大于0.与,与,与全不相等,2,2,2,三式相加得6,3,即3.考点二分析法的应用【例2】 已知a0,求证:a2.审题路线从结论动身观看不等式两边的符号移项(把不等式两边都
5、变为正项)平方移项整理平方移项整理可得明显成立的结论证明(1)要证a2,只需要证2a.a0,故只需要证22,即a244a2222,从而只需要证2,只需要证42,即a22,而上述不等式明显成立,故原不等式成立规律方法 (1)逆向思考是用分析法证题的主要思想,通过反推,逐步查找使结论成立的充分条件正确把握转化方向是使问题顺当获解的关键(2)证明较简单的问题时,可以接受两头凑的方法,即通过分析法找出某个与结论等价(或充分)的中间结论,然后通过综合法证明这个中间结论,从而使原命题得证【训练2】 已知m0,a,bR,求证:2.证明m0,1m0.所以要证原不等式成立,只需证(amb)2(1m)(a2mb2
6、)即证m(a22abb2)0,即证(ab)20,而(ab)20明显成立,故原不等式得证考点三反证法的应用【例3】 等差数列an的前n项和为Sn,a11,S393.(1)求数列an的通项an与前n项和Sn;(2)设bn(nN*),求证:数列bn中任意不同的三项都不行能成为等比数列(1)解由已知得d2,故an2n1,Snn(n)(2)证明由(1)得bnn.假设数列bn中存在三项bp,bq,br(p,q,rN*,且互不相等)成等比数列,则bbpbr.即(q)2(p)(r)(q2pr)(2qpr)0.p,q,rN*,2pr,(pr)20.pr,与pr冲突数列bn中任意不同的三项都不行能成等比数列.同学
7、用书第204页规律方法 用反证法证明不等式要把握三点:(1)必需先否定结论,即确定结论的反面;(2)必需从否定结论进行推理,即应把结论的反面作为条件,且必需依据这一条件进行推证;(3)推导出的冲突可能多种多样,有的与已知冲突,有的与假设冲突,有的与已知事实冲突等,且推导出的冲突必需是明显的【训练3】 已知a1,求证三个方程:x24ax4a30,x2(a1)xa20,x22ax2a0中至少有一个方程有实数根证明假设三个方程都没有实数根,则a1.这与已知a1冲突,所以假设不成立,故原结论成立1分析法的特点:从未知看需知,逐步靠拢已知2综合法的特点:从已知看可知,逐步推出未知3分析法和综合法各有优缺
8、点分析法思考起来比较自然,简洁查找到解题的思路和方法,缺点是思路逆行,叙述较繁;综合法从条件推出结论,较简捷地解决问题,但不便于思考实际证题时经常两法兼用,先用分析法探究证明途径,然后再用综合法叙述出来4利用反证法证明数学问题时,要假设结论错误,并用假设的命题进行推理,没有用假设命题推理而推出冲突结果,其推理过程是错误的答题模板13反证法在证明题中的应用【典例】 (14分)(2021北京卷)直线ykxm(m0)与椭圆W:y21相交于A,C两点,O是坐标原点(1)当点B的坐标为(0,1),且四边形OABC为菱形时,求AC的长;(2)当点B在W上且不是W的顶点时,证明:四边形OABC不行能为菱形规
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 创新设计 创新 设计 2021 年高 数学 四川 专用 一轮 复习 考点 突破 12 直接 证明 间接
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
链接地址:https://www.zixin.com.cn/doc/3805030.html