高中数学(北师大版)选修2-2教案:第4章-定积分的概念-第三课时参考教案.docx
《高中数学(北师大版)选修2-2教案:第4章-定积分的概念-第三课时参考教案.docx》由会员分享,可在线阅读,更多相关《高中数学(北师大版)选修2-2教案:第4章-定积分的概念-第三课时参考教案.docx(2页珍藏版)》请在咨信网上搜索。
定积分的概念 第三课时 一、教学目标: 1.通过求曲边梯形的面积和汽车行驶的路程,了解定积分的背景 ;2.借助于几何直观定积分的基本思想,了解定积分的概念,能用定积分定义求简洁的定积分; 3.理解把握定积分的几何意义. 二、教学重难点: 重点:定积分的概念、用定义求简洁的定积分、定积分的几何意义. 难点:定积分的概念、定积分的几何意义. 三、教学方法:探析归纳,讲练结合 四、教学过程 (一)、创设情景 复习:1. 回忆前面曲边梯形的面积,汽车行驶的路程等问题的解决方法,解决步骤: 分割→近似代替(以直代曲)→求和→取极限(靠近) 2.对这四个步骤再以分析、理解、归纳,找出共同点. (二)、新课探析 1.定积分的概念 一般地,设函数在区间上连续,用分点 将区间等分成个小区间,每个小区间长度为(),在每个小区间上任取一点,作和式: 假如无限接近于(亦即)时,上述和式无限趋近于常数,那么称该常数为函数在区间上的定积分。记为:, 其中积分号,-积分上限,-积分下限,-被积函数,-积分变量,-积分区间,-被积式。 说明:(1)定积分是一个常数,即无限趋近的常数(时)记为,而不是. (2)用定义求定积分的一般方法是:①分割:等分区间;②近似代替:取点;③求和:;④取极限: (3)曲边图形面积:;变速运动路程;变力做功 2.定积分的几何意义 从几何上看,假如在区间上函数连续且恒有,那么定积分表示由直线和曲线所围成的曲边梯形(如图中的阴影部分)的面积,这就是定积分的几何意义。 说明:一般状况下,定积分的几何意义是介于轴、函数的图形以及直线之间各部分面积的代数和,在轴上方的面积取正号,在轴下方的面积去负号。 分析:一般的,设被积函数,若在上可取负值。 考察和式 不妨设 于是和式即为 阴影的面积—阴影的面积(即轴上方面积减轴下方的面积) 思考:依据定积分的几何意义,你能用定积分表示图中阴影部分的面积S吗? 3.定积分的性质 依据定积分的定义,不难得出定积分的如下性质: 性质1; 性质2(定积分的线性性质); 性质3(定积分的线性性质); 性质4(定积分对积分区间的可加性) (1) ; (2) ; 说明:①推广: ②推广: ③性质解释: 性质4 性质1 (三).典例分析 例1、计算定积分 1 2 y x O 分析:所求定积分是所围成的梯形面积,即为如图阴影部分面积,面积为。 即: 思考:若改为计算定积分呢? 转变了积分上、下限,被积函数在上,毁灭了负值如何解决呢?(后面解决的问题) 例2、计算定积分 分析:利用定积分性质有, 利用定积分的定义分别求出,,就能得到的值。 (四).课堂练习 计算下列定积分 1. 2. (五).回顾总结:定积分的概念、用定义法求简洁的定积分、定积分的几何意义. (六).布置作业: 五、教学后记:- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 优教通-同步备课 优教通 同步 备课 高中数学 北师大 选修 教案 积分 概念 第三 课时 参考
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文