高中数学(北师大版)必修五教案:1.1-拓展资料:数列定义在解题中的潜在功能.docx
《高中数学(北师大版)必修五教案:1.1-拓展资料:数列定义在解题中的潜在功能.docx》由会员分享,可在线阅读,更多相关《高中数学(北师大版)必修五教案:1.1-拓展资料:数列定义在解题中的潜在功能.docx(3页珍藏版)》请在咨信网上搜索。
数列定义在解题中的潜在功能 高考作为一种选拔性考试,在重视基础学问考查的同时,更加重视对应用力气的考查.作为中学数学的重点内容之一,等差(比)数列始终是高考考查时重点,特殊是近几年,有关数列的高考综合题,几乎都与等差(比)数列有关.这里我们感爱好的是等差(比)数列的定义在解题中的潜在功能,即遇到数列问题,特殊是证明通项为and 或前n项和首先要证明它是等差(比)数列,必要时再进行适当转化,即将一般数列转化为等差(比)数列. 例1.设等差数列的前m项和为30,前2m项和为100,则它的前3m项和为( ). (A)130 (B)170 (C)210 (D)260 解 若等差数列前m项、次m项、又次m项和分别为S1,S2,S3,则S1,S2,S3也成等差数列.事实上, 所以S1,S2,S3成等差数列. 由于30,70,S3m-100成等差数列,所以30+S3m-100=140,即S3m=210.故应选(C). 例2.设{an}是等差数列,,已知,求等差数列的通项公式. 解 ∵{an}成等差数列,∴{bn}成等比数列,∴=b1b3.由b1b2b3=,得b2=. 从而有b1+b3= ,b1b3=. ∴b1,b3是方程x2-+两根.解得或, ∴a1=-1,d=2或a1=3,d=-2. 故an=a1+(n-1)d=2n-3或an=5-2n. 例3.一个数列{an},当n为奇数时, an=5n+1;当n为偶数时,an=2,求这个数列的前2m项的和. 解:∵a1,a3,a5,…,a2m-1成等差数列,成等比数列, ∴S2m= . 例4.设数列前n项和Sn与an的关系是(其中k是与n无关的常数,且k≠1). (1)试写出由n,k表示的an的表达式;(2)若,求k的取值范围. 解:(1)当n=1时,由,得 当n≥2时,由,得 . 若k=0,则an=1(n=1)或an=0(n≥2). 若k≠0,则{an}是首项为,公比为的等比数列,所以. (2)∵,∴<1,解得k<. 例5.已知数列{an}的前n项和的公式是. (1)求证:{an}是等差数列,并求出它的首项和公差; (2)记,求证:对任意自然数n,都有. 证明:(1)当n=1时,;当n≥2时, =. ∴ ∴{an}是首项为,公差为的等差数列. (2)只要证明{bn}是首项为,公比为-1的等比数列. ,和 ∴{bn}是首项为,公比为-1的等比数列,∴. 例6.设{an}是正数组成的数列,其前n项和为Sn,并且对于全部自然数n,an与2的等差中项等于Sn与2的等比中项. (1)写出数列{an}的前3项; (2)求数列{an}的通项公式(写出推证过程); (3)令,求 解 (1)∵ ,得>0;, 解得:>0);,解得:>0). (2)当n≥2时,, 即,即. . >0,.{an}是首项为2,公差为4的等差数列, ∴. (3), . 例7.已知数列{an}满足条件:>0),且{anan-1}是公比为q(q>0)的等比数列.设. (1)求出访不等式>成立的q的取值范围; (2)求bn和,其中; (3)设,求数列的最大项和最小项的值. 解: (1)>>0,q>0,<0,∴0<q< . (2). 又是首项为1+r,公比为q的等比数列,. (3). 记,则有≤≤c21. 故{cn}的最大项为c21=2.25,最小项为c20=-4. 例8.设An为数列{an}前n项的和,数列{bn}的通项公式为 (1)求数列{an}的通项公式; (2)若,则称d为数列{an}与{bn}的公共项.将数列{an}与{bn}的公共项,按它们在原数列中的先后挨次排成一个新的数列{dn},证明数列{dn}的通项是 (3)设数列{dn}中的第n项是数列{bn}中的第r项,Br为数列{bn}前r项的和,Dn为数列{dn}前n项的和,Tn=Br-Dn,求 解: (1)当n=1时,由,得a1=3; 当n≥2时,由,得≥2) ∴{an}是首项为3,公比为3的等比数列,故 (2)证{dn}是等比数列. 明显d1=a3=27,设ai=3k是数列{bn}中的第m项,则. ; 不是数列{bn}中的项.而 是数列{bn}中的第m+1项. ,∴{dn}是首项为27,公比为9的等比数列. (3)由题意, 又 . 故.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 优教通-同步备课 优教通 同步 备课 高中数学 北师大 必修 教案 1.1 拓展 资料 数列 定义 解题 中的 潜在 功能
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文